A Hidden Markov Model for Morphology of Compound Roles in Persian Text Part of Tagging
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 34، شماره: 11
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 230
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-34-11_012
تاریخ نمایه سازی: 10 اردیبهشت 1401
چکیده مقاله:
Nowadays, data mining has become significant given the popularity of social networks as well as the emergence of abbreviated words, foreign terms and emoticons in the Persian language. Meanwhile, numerous studies have been conducted to identify the type of words. On the one hand, identifying the role of each word in a sentence is far more important than identifying the type of word in the sentence. On the other hand, the spelling-grammatical similarity of Persian to Arabic has enabled the newly proposed method in this paper to be applied to Arabic. In this paper, we adopted the Hidden Markov Model (MHM) and Tri-gram tagging with the aim of identifying the morphology of composition roles in Persian sentences. Then, a comparison was made between the technique developed in this paper and the Hidden Markov Model, Uni-gram and Bi-gram tagging. The proposed method supports the results obtained by the word role identification through "independent" and "dependent" roles and several factors that have a contribution to the words roles in sentences. In fact, the simulation results show that the average success rates of independent composition roles with MHM and Tri-gram tagging were ۲۰.۵۶% and ۱۷.۶۷% compared to Uni-gram and Bi-gram methods, respectively. Regarding the dependent composition role, there were improvements by ۲۴.۶۷% and ۳۲.۶۲%, respectively.
کلیدواژه ها:
نویسندگان
H. Rezaei
Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran
H. Motameni
Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran
B. Barzegar
Department of Computer Engineering, Babol Branch, Islamic Azad University, Babol, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :