Stock Portfolio Optimization Using a Combined Approach of Relative Robust Risk Parity
محل انتشار: مجله مالی ایران، دوره: 5، شماره: 4
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 327
فایل این مقاله در 21 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFIFSA-5-4_005
تاریخ نمایه سازی: 24 فروردین 1401
چکیده مقاله:
Risk parity is perceived as one of the stock portfolio selection models that have received a lot of attention since the US financial crisis in ۲۰۰۸. The philosophy of this model is to allocate the same amount of portfolio risk between the constituent assets. In the present study, the combined portfolio selection model of relative robust risk parity is introduced, which uses the worst-case scenario approach on the covariance matrix parameter appearing in the robust risk model in portfolio robustness. According to historical data, several scenarios are considered for the covariance matrix. The objective function value of the hybrid model for each portfolio (feasible point) is the worst result (with most volatility) among the set of scenarios. Finally, the model selects a portfolio for which the worst possible result has the least relative volatility. The research portfolio consists of ۸ industries from Tehran Stock Exchange in the period ۲۰۱۱ to ۲۰۲۰. This portfolio has a higher Sharpe ratio than conventional models of mean-variance and weight parity, and is more resilient to market declines than the two models and produces less loss. Therefore, risk-averse investors are advised to use this stock portfolio selection model as a cover to face severe market declines.
کلیدواژه ها:
نویسندگان
Sayed Mohammad Ebrahim Mirmohammadi
Ph.D. Candidate, Faculty of Financial Engeenering, Kashan Branch, Islamic Azad University, Kashan, Iran.
Mehdi Madanchi zaj
Assistant Prof., Department of Financial Management, Faculty of Management, E-Campus Branch, Islamic Azad University, Tehran, Iran.
Hossein Panahian
Associate Prof., Department of Accounting, Kashan Branch, Islamic Azad University, Kashan, Iran.
Hossein Jabbary
Assistance Prof., Department of Accounting, Kashan Branch, Islamic Azad University, Kashan, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :