Representation of National Identity in English Vision Textbook Series for Iranian Senior High Schools
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 262
فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_AREUIT-11-2_001
تاریخ نمایه سازی: 22 فروردین 1401
چکیده مقاله:
Textbooks in ELT perform different functions since their content can serve different purposes. Particularly, the content of textbooks can affect learners’ views to a great deal. Accordingly, designing ELT textbooks can generate much disagreement. Thus, textbook content is considered important and demands critical evaluation. This study explored the representation of national identity in the English Vision textbook series for Iranian senior high schools. For this aim, corpus analysis and content analysis were carried out, respectively, aimed at providing a description of the terms associated with nationalities, and describing aspects of national identity represented in the textbooks. The data in the corpus analysis phase were collected through obtaining frequencies of reference to nations and in the content analysis phase by means of a researcher-made checklist. Results revealed that Iranian identity is the most frequent aspect, for which ۱۳ categories of reference were observed. Similarly, six major themes were found regarding aspects of national identity. This study offers implications for Iranian education policy-makers, textbook designers, and education practitioners.
کلیدواژه ها:
نویسندگان
Mojtaba Gheitasi
PhD of TEFL, Department of English, Faculty of the Humanities, Ilam University, Ilam, Iran
Mohammad Aliakbari
Professor of TEFL, Department of English, Faculty of the Humanities, Ilam University, Ilam, Iran
Reza Khany
Associate Professor of TEFL, Department of English, Faculty of the Humanities, Ilam University, Ilam, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :