Using Mott polynomials operational matrices to optimize multi-dimensional fractional optimal control problems

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 190

فایل این مقاله در 27 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-12-1_011

تاریخ نمایه سازی: 21 فروردین 1401

چکیده مقاله:

We offer a method for solving the fractional optimal control problems of multi-dimensional. We obtain a fractional derivative and multiplication operational matrix for Mott polynomials (M-polynomials). In the proposed method, the Caputo sense of the fractional derivative is applied on dynamical system. The main feature of this method is to reduce the problem into a system of algebraic equations in order to simplify it. We also show that by increasing the approximation points, the responses converge to the real answer. When the degree of fractional derivative approaches to ۱, then the obtained solution approaches to the classical solution as well.

کلیدواژه ها:

Mott polynomials ، Caputo derivative ، fractional optimal control problems ، Operational matrix

نویسندگان

S.A. Alavi

Department of Mathematics,Payame Noor University, Tehran, Iran.

A. Haghighi

Department of Mathematics, Technical and Vocational University, Tehran, Iran.

A. Yari

Department of Mathematics, Payame Noor University, PO BOX ۹۳۹۵-۳۶۹۷, Tehran, Iran.

F. Soltanian

Department of Mathematics, Payame Noor University, PO BOX ۹۳۹۵-۳۶۹۷, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Agrawal, O.P. On a general formulation for the numerical solution ...
  • Agrawal O.P. A general formulation and solution scheme for fractional ...
  • Agrawal, O.P. and Baleanu, D. A Hamiltonian formulation and a ...
  • Ahmadi Darani, M. and Saadatmandi, A. The operational matrix of ...
  • Akbarian, T. and Keyanpour, M. A new approach to the ...
  • Ashpazzadeh, E., Lakestani, M. and Yildirim, A. Biorthogonal multiwavelets on ...
  • Atanacković, T.M., Pilipović, S., Stanković, B., and Zorica, D. Fractional ...
  • Bagley, RL and Torvik PJ (۱۹۸۳) A theoretical basis for ...
  • Baleanu, D., Defterli, O. and Agrawal, O.P. A central difference ...
  • Bohannan, G.W. Analog fractional order controller in temperature and motor ...
  • Caputo, M. Linear models of dissipation whose Q is almost ...
  • Chow, T.S. Fractional dynamics of interfaces between soft-nanoparticles and rough ...
  • Defterli, O. A numerical scheme for two-dimensional optimal control problems ...
  • Garrappa, R. Numerical solution of fractional differential equations: A survey ...
  • Habibli, M. and Noori Skandari, M.H. Fractional Chebyshev pseudospectral method ...
  • Hoda F. Ahmed A numerical technique for solving multidimensional fractional ...
  • Keshavarz, E., Ordokhani, Y. and Razzaghi, M. A numerical solution ...
  • Jesus, I.S. and Machado, J.T. Fractional control of heat diffusion ...
  • Kreyszig, E. Introductory functional analysis with applications, New York: John ...
  • Kruchinin, D.V. Explicit formulas for some generalized Mott polynomials, Advanced ...
  • Lotfi, A., Dehghan, M. and Yousefi, S.A. A numerical technique ...
  • Maheswaran, A. and Elango, Characterization of delta operator for Euler, ...
  • Moghaddam, M.A., Yousef, E. and Lakestani, M. Solving fractional optimal ...
  • Mott, N.F. The polarization of electrons by double scattering, Proc. ...
  • Nemati. A., Yousefi, S.A. A numerical method for solving fractional ...
  • Oldham, K.B. and Spanier, J. The fractional calculus: Theory and ...
  • Ross, B. A brief history and exposition of the fundamental ...
  • Weisstein, Eric W. “Mott Polynomial.” From MathWorld–A Wolfram Web Resource. ...
  • Yousefi, S.A., Lotfi, A. and Dehghan, M. The use of ...
  • نمایش کامل مراجع