Convolutional Neural Networks with Different Dimensions for POLSAR Image Classification

سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 174

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:


تاریخ نمایه سازی: 23 اسفند 1400

چکیده مقاله:

Polarimetric Synthetic aperture radar (PolSAR) images contain polarimetric and spatial information of materials present in the scene. Three simple architectures of convolutional neural networks (CNNs) with different dimensions are proposed for PolSAR image classification in this work. A one dimensional CNN (۱D CNN) is suggested for polarimetric feature extraction. A ۲D CNN is presented for spatial feature extraction and a ۳D CNN is introduced for polarimetric-spatial feature extraction. The performance of CNNs are compared with morphological profile of PolSAR cube when fed to the support vector machine (SVM) and random forest (RF) classifiers. The experiments are done in two cases of using ۱% and ۵% training samples. The superiority of ۳D CNN compared to other methods is shown using different quantitative classification measures.

کلیدواژه ها:


Maryam Imani

Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran