The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

سال انتشار: 1386
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 232

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-20-6_003

تاریخ نمایه سازی: 20 اسفند 1400

چکیده مقاله:

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomial models which particularly in the case of small samples, has preference to maximum likelihood methods. The probit regression model for binary outcomes can be easily and precisely explained using different normal distributions for latent data modeling. Applying this approach and using Gibbs sampler method needs simulation of standard distributions such as multivariate normal distribution. Therefore, it can be easily implemented by many softwares and it provides a general method for analyzing binary (or polychotomous) response regression models.

نویسندگان

S. Nasrollahzadeh

Mathematics, Teachers’ Training Faculty