Bio-sorption of ammonium ions by dried red marine algae (Gracilaria persica): Application of response surface methodology
محل انتشار: مجله علوم شیلات ایران، دوره: 19، شماره: 4
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 185
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JIFRO-19-4_024
تاریخ نمایه سازی: 1 اسفند 1400
چکیده مقاله:
The bio-sorption of ammonium ions using red marine macroalga Gracilaria persica were investigated by response surface methodology. The sorbent was characterized by SEM and FTIR analysis. The influence of various operating parameters such as ammonium concentration (mg L-۱), initial solution pH and alga biomass dosage (g L-۱) was optimized using Box–Behnken design. A second-order polynomial model successfully described the effects of independent variables on the ammonium ions removal. At the optimum conditions, the maximum removal efficiency was achieved at ۱۰۰.۰۱ %. The kinetic results also demonstrated that the bio-sorption of ammonium ions by the dried microalga followed well pseudo-second-order kinetics. FTIR results showed that amide, aliphatic and carbonyl groups might be responsible for the adsorption of ammonium ions in aqueous solution by dried G. persica biomass.
کلیدواژه ها:
نویسندگان
A. Jafari
Department of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural and Natural Resources University, Sari, Iran
A. Keramat Amirkolaie
Department of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural and Natural Resources University, Sari, Iran
H. Oraji
Department of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural and Natural Resources University, Sari, Iran
M. Kousha
Department of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural and Natural Resources University, Sari, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :