Spatial-based classification trees with an application to house pricing
سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 322
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
GISCIENCE02_056
تاریخ نمایه سازی: 3 بهمن 1400
چکیده مقاله:
Common statistical learning algorithms assume independent data points. Among them, the well-known CART algorithm considers independent and identically distributed observations to construct classification rules. In spatial data sets, because of the existence of spatial correlation between observations, the independence assumption is violated, and then it may not be efficient for analyzing spatial data sets. In this paper, we study the classical Boston housing data set using the spatial CART algorithm which is based on both spatial weights and entropy. To do this, latitude and longitude coordinates of the data points from the GIS system as well some covariates are considered for data analysis.
کلیدواژه ها:
نویسندگان
Tahereh Alami
Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Iran
Mahdi Doostparast
Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Iran