Publisher of Iranian Journals and Conference Proceedings

Please waite ..
ناشر تخصصی کنفرانسهای ایران
ورود |عضویت رایگان |راهنمای سایت |عضویت کتابخانه ها
عنوان
مقاله

Evaluation and Comparison of Different Supervised Classification Algorithms in Lands User Map Preparation Using Satellite Images (Case Study: Miandoab City)

فصلنامه ی سنجش از دور راداری و نوری، دوره: 4، شماره: 1
سال انتشار: 1400
کد COI مقاله: JR_JRORS-4-1_003
زبان مقاله: انگلیسیمشاهده این مقاله: 15
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 12 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Evaluation and Comparison of Different Supervised Classification Algorithms in Lands User Map Preparation Using Satellite Images (Case Study: Miandoab City)

Mehdi Mohamadpour - Master of Remote Sensing

چکیده مقاله:

Preparation of land use maps using traditional methods, in addition to spending a lot of time and money, is mainly about efficiency and it does not have the necessary accuracy. Today, satellite imagery and remote sensing techniques have a wide range of applications in all sectors, including agriculture, natural resources, and land use mapping, due to the provision of timely data and high analysis capabilities, variety of shapes, digitality, and the possibility of processing. Satellite imagery Landsat ۸ for August ۲۰۲۰ was used, which after making the necessary corrections in the pre-processing stage, action experimentation or fusion of the desired image using the panchromatic band and spatial resolution of the image was increased from ۳۰ meters to ۱۵ meters. In the next step, four different classification methods, including backup vector machine, maximum probability, Mahalanoob distance, and minimum mean distance were compared. The results showed that the classification method of backup vector machine with average overall coefficients and kappa of ۱۰۰ and ۱, respectively, has higher accuracy than other methods. Priority accuracy of classification methods is in the form of backup vector machine, maximum probability, Mahalanoob distance, and minimum distance from the mean, respectively. Finally, by assessing the accuracy using user accuracy, producer accuracy, overall accuracy, kappa coefficient and error matrix, land use map was prepared in three separate classes.

کلیدواژه ها:

کد مقاله/لینک ثابت به این مقاله

کد یکتای اختصاصی (COI) این مقاله در پایگاه سیویلیکا JR_JRORS-4-1_003 میباشد و برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/1372004/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Mohamadpour, Mehdi,1400,Evaluation and Comparison of Different Supervised Classification Algorithms in Lands User Map Preparation Using Satellite Images (Case Study: Miandoab City),https://civilica.com/doc/1372004

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1400, Mohamadpour, Mehdi؛ )
برای بار دوم به بعد: (1400, Mohamadpour؛ )
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی