The Characteristics of Self-Resonating Jet Issuing from the Helmholtz Nozzle Combined with a Venturi Tube Structure
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 230
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JAFM-13-3_002
تاریخ نمایه سازی: 15 دی 1400
چکیده مقاله:
Self-resonating waterjet is a new type of waterjet technology that has been widely used for many practical applications. In order to further improve the performance of self-resonating waterjet, the Helmholtz nozzle was improved by replacing the upper part of a traditional contract structure with a venture tube one. This composite nozzle of a venturi tube structure and a Helmholtz resonator was proposed based on the working mechanism of self-resonating waterjet nozzles and the instability of cavitation flow in venturi tubes. Furthermore, the results were also compared with those generated by a conventional Helmholtz nozzle under the same conditions. The frequency of the pressure pulsation in the oscillating cavity and at the outlet was obtained and analyzed by the classical Fast Fourier transform (FFT) method. The results showed that the main frequency of the pressure oscillation rises to ۲۳۶۲.۷۸Hz, and the peak and average values of the pressure are increased by ۴۵% and ۱۲.۵% respectively at the outlet of the composite nozzle. In the oscillating cavity of composite nozzle, the pressure oscillations in the central region have higher frequencies and amplitudes, while near the wall are reversed.
کلیدواژه ها:
resonating waterjet ، Self ، Oscillation characteristics ، Classical Fast Fourier Transform (FFT) method ، Numerical simulation
نویسندگان
M. Yuan
Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan ۴۳۰۰۷۲, China
D. Li
Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan ۴۳۰۰۷۲, China
Y. Kang
Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan ۴۳۰۰۷۲, China
H. Shi
Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan ۴۳۰۰۷۲, China
Y. Hu
Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan ۴۳۰۰۷۲, China