Predicting the energy dissipation of a rough sudden expansion rectangular stilling basins using the SVM algorithm
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 236
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ARWW-8-2_002
تاریخ نمایه سازی: 11 دی 1400
چکیده مقاله:
In this research, the performance of support vector machine in predicting relativeenergy dissipation in non-prismatic channel and rough bed with trapezoidalelements has been investigated. To achieve the objectives of the present study,۱۳۶ series of laboratory data are analyzed under the same laboratory conditionsusing a support vector machine. The present study entered the support vectormachine network without dimension in two different scenarios with a height of ۱.۵۰and ۳.۰ cm rough elements. Two statistical criteria of Root Mean Square Error andcoefficient of determination are used to evaluate the efficiency of input compounds.Hydraulically, the results show that at both heights of the rough elements, energydissipation increased with increasing Froude number. The results of the supportvector machine show that the height of the roughness element is ۱.۵۰ cm in thefirst scenario, combination number ۶ with R۲ = ۰.۹۹۰ and RMSE = ۰.۰۱۲۹ fortraining mode and R۲ = ۰.۹۹۳ and RMSE = ۰.۰۳۲ for testing mode and the heightof the roughness element ۳.۰ in the second scenario, combination number ۶ withR۲ = ۰.۹۸۹ and RMSE = ۰.۰۱۱۲ for training mode, R۲ = ۰.۹۹۴ and RMSE = ۰.۰۲۲۴for testing mode are select as the best models. Finally, sensitivity analysis isperformed on the parameters and H / y۱ parameter is selected as the most effectiveparameter.
کلیدواژه ها:
نویسندگان
Rasoul Daneshfaraz
Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh, Iran.
Ehsan Aminvash
۱Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh, Iran.
Reza Mmirzaee
Department of Civil Engineering, Faculty of Engineering, University of Semnan, Semnan, Iran.
John Abraham
School of Engineering, Faculty of Engineering, University of St. Thomas, St Paul, USA.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :