Prediction of Stock Price using Particle Swarm Optimization Algorithm and Box-Jenkins Time Series
سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 177
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJFMA-2-7_003
تاریخ نمایه سازی: 13 آذر 1400
چکیده مقاله:
The purpose of this research is predicting the stock prices using the Particle Swarm Optimization Algorithm and Box-Jenkins method. In this way, the information of ۱۶۵ corporations is collected from ۲۰۰۱ to ۲۰۱۶. Then, this research considers price to earnings per share and earnings per share as main variables. The relevant regression equation was created using two variables of earnings per share and price to earnings per share, and stock prices were predicted through particle swarm optimization algorithm in MATLAB. IBM SPSS was used to predict stock prices with Box-Jenkins time series. The Results indicate that particle swarm optimization algorithm with ۴% error and Box-Jenkins time series with ۱۹% error, have the potential to predict stock prices of companies. Moreover, PSO algorithm model predict stock prices more precisely than Box-Jenkins time series. Also by using EViews ۷ software, the results of Wilcoxon-Mann Whitney statistics showed that PSO algorithm predicts the stock price more accurately
کلیدواژه ها:
Box-Jenkins Time Series ، Earnings per Share ، Particle Swarm Optimization (PSO) Algorithms ، Price to Earnings Ratio ، Stock Price
نویسندگان
Shokrolah Khajavi
Professor of Accounting, Shiraz University, Shiraz, Iran (Corresponding Author)
Fateme Sadat Amiri
Msc of Accounting, Shiraz University, Shiraz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :