Object Segmentation using Local Histograms, Invasive Weed Optimization Algorithm and Texture Analysis
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 9، شماره: 4
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 284
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-9-4_003
تاریخ نمایه سازی: 8 آذر 1400
چکیده مقاله:
Most of the methods proposed for segmenting image objects are supervised methods which are costly due to their need for large amounts of labeled data. However, in this article, we have presented a method for segmenting objects based on a meta-heuristic optimization which does not need any training data. This procedure consists of two main stages of edge detection and texture analysis. In the edge detection stage, we have utilized invasive weed optimization (IWO) and local thresholding. Edge detection methods that are based on local histograms are efficient methods, but it is very difficult to determine the desired parameters manually. In addition, these parameters must be selected specifically for each image. In this paper, a method is presented for automatic determination of these parameters using an evolutionary algorithm. Evaluation of this method demonstrates its high performance on natural images.
کلیدواژه ها:
نویسندگان
S. Bayatpour
Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran.
Seyed M. H. Hasheminejad
Department of Computer Engineering, Faculty of Engineering, Alzahra University, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :