Numerical Scheme based on Non-polynomial Spline Functions for ‎the System of Second Order Boundary Value Problems arising in ‎Various Engineering Applications

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 265

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JACM-8-1_012

تاریخ نمایه سازی: 8 آذر 1400

چکیده مقاله:

Several applications of computational science and engineering, including population dynamics, optimal control, and physics, reduce to the study of a system of second-order boundary value problems. To achieve the improved solution of these problems, an efficient numerical method is developed by using spline functions. A non-polynomial cubic spline-based method is proposed for the first time to solve a linear system of second-order differential equations. Convergence and stability of the proposed method are also investigated. A mathematical procedure is described in detail, and several examples are solved with numerical and graphical illustrations. It is shown that our method yields improved results when compared to the results available in the literature.

نویسندگان

Anju Chaurasia

Department of Mathematics, Birla Institute of Technology, Allahabad-۲۱۱۰۱۰ (U.P.), India‎

Yogesh Gupta

Department of Mathematics, Jaypee Institute of Information Technology, Noida-۲۰۱۳۰۹ (U.P.), India‎

Prakash C. Srivastava

Department of Mathematics, Birla Institute of Technology, Patna-۸۰۰۰۱۴ (Bihar), India‎

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Chang, C.C., Gambhir, A., Humble, T.S., Sota, S., Quantum Annealing ...
  • Gupta, Y., Numerical Solution of System of Boundary Value Problems ...
  • Geng, F., Cui, M., Solving a Non-linear System of Second ...
  • Dehgan, M., Saadatmandi, A., The Numerical Solution of a Nonlinear ...
  • Gamel,E. M., Sinc-collocation Method for Solving Linear and Non-Linear System ...
  • Lu, J. F., Variational Iteration Method for Solving a Nonlinear ...
  • Bataineh, M., Noorani, S. M., Hashim, I., Modified Homotopy Analysis ...
  • Ogunlaran, O.M., Ademola, A.T., On the Laplace Homotopy Analysis Method ...
  • Chaurasia, A., Srivastava, P.C., Gupta, Y., Solution of Higher Order ...
  • Dehghan, M., Lakestani, M., Numerical Solution of Non-linear System of ...
  • Caglar, N., Caglar, H., B-spline Method for Solving Linear System ...
  • Khuri, S. A., Sayfy, A., Collocation Approach for the Numerical ...
  • Heilat, A., Hamid, N., Ismail, A.I.M., Extended Cubic B‑spline Method ...
  • Goh, J., Majid, A.A., Ismail, A.I.M., Extended Cubic Uniform B-spline ...
  • Fay, T. H., Coupled Spring Equations, International Journal of Mathematical Education in Science and Technology, ۳۴(۱), ...
  • Chen, S., Hu, J., Chen, L., Wang, C., Existence Results ...
  • Cheng, X., Zhong, C., Existence of Positive Solutions for a ...
  • Thompson, H.B., Tisdell, C., Boundary Value Problems for Systems of ...
  • Thompson, H.B., Tisdell, C., The Non-existence of Spurious Solutions to ...
  • Chaurasia, A., Srivastava, P.C., Gupta, Y., Exponential Spline Approximation for ...
  • Chaurasia, A., Srivastava, P. C., Gupta, Y., Bhardwaj, A., Composite ...
  • Albasiny, E.L., Hoskins, W.D., Cubic Spline Solutions to Two-Point Boundary ...
  • Jain, M.K., Numerical Solution of Differential Equations, Wiley Eastern, New ...
  • Gil, M.I., Invertibility Conditions for Block Matrices and Estimates for ...
  • نمایش کامل مراجع