Numerical Solution of the Time Fractional Reaction-advection-diffusion Equation in Porous Media

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 247

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JACM-8-1_008

تاریخ نمایه سازی: 8 آذر 1400

چکیده مقاله:

In this work, we obtained the numerical solution for the system of nonlinear time-fractional order advection-reaction-diffusion equation using the homotopy perturbation method using Laplace transform method with fractional order derivatives in Liouville-Caputo sense. The solution obtained is very useful and significant to analyze many physical phenomenons. The present technique demonstrates the coupling of homotopy perturbation method and the Laplace transform technique using He’s polynomials, which can be applied to numerous coupled systems of nonlinear fractional models to find the approximate numerical solutions. The salient features of the present work is the graphical presentations of the numerical solution of the concerned nonlinear coupled equation for several particular cases and showcasing the effect of reaction terms on the nature of solute concentration of the considered mathematical model for different particular cases. To validate the reliability, efficiency and accuracy of the proposed efficient scheme, a comparison of numerical solutions and exact solution are reported for Burgers’ coupled equations and other particular cases of concerned nonlinear coupled systems. Here we find high consistency and compatibility between exact and numerical solution to a high accuracy. Presentation of absolute errors for given examples are reported in tabulated and graphical forms that ensure the convergence rate of the numerical scheme.

نویسندگان

Prashant Pandey

Department of Mathematical Sciences. Indian Institute of Technology (BHU), Varanasi, ۲۲۱۰۰۵, India

Sachin Kumar

Department of Mathematical Sciences. Indian Institute of Technology (BHU), Varanasi, ۲۲۱۰۰۵, India

J.F. Gómez-Aguilar

CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. ۶۲۴۹۰, Cuernavaca Morelos, Mexico

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • H.G. Sun, Z. Li, Y. Zhang, W. Chen, Fractional and ...
  • S. Zubair, N.I. Chaudhary, Z.A. Khan, W. Wang, Momentum fractional ...
  • A. Ahlgren, R. Wirestam, F. Ståhlberg, L. Knutsson, Automatic brain ...
  • D. Kumar, J. Singh, S. Kumar, A fractional model of ...
  • J. Han, S. Migórski, H. Zeng, Weak solvability of a ...
  • D.A. Murio. Implicit finite difference approximation for time fractional diffusion ...
  • H. Wang, K. Wang, T. Sircar, A direct O (N ...
  • P. Darania, A. Ebadian, A method for the numerical solution ...
  • S.S. Ray, R.K. Bera, Solution of an extraordinary differential equation ...
  • Y. Li, N. Sun, Numerical solution of fractional differential equations ...
  • H. Jafari, S.A. Yousefi, M.A. Firoozjaee, S. Momani, C.M. Khalique, ...
  • S. Kumar, P. Pandey, S. Das, Gegenbauer wavelet operational matrix ...
  • Y. Li, Solving a nonlinear fractional differential equation using chebyshev ...
  • M. Tavassoli Kajani, A. Hadi Vencheh, M. Ghasemi, The chebyshev ...
  • N.H. Sweilam, A.M. Nagy, A.A El-Sayed, On the numerical solution ...
  • H. Saeedi, M. Mohseni Moghadam, N. Mollahasani, G.N. Chuev, A ...
  • Y. Li, W. Zhao, Haar wavelet operational matrix of fractional ...
  • V.F. Morales-Delgado, J.F. Gómez-Aguilar, K.M. Saad, M. Altaf Khan, P. ...
  • P. Pandey, S. Kumar, S. Das. Approximate analytical solution of ...
  • Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation. ...
  • J.D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics. ...
  • J.M. Burgers, A mathematical model illustrating the theory of turbulence. ...
  • M. Thangarajan, Groundwater models and their role in assessment and ...
  • J.F. Gómez-Aguilar, M. Miranda-Hernández, M.G. López-López, V.M. Alvarado-Martínez, D. Baleanu, ...
  • J. Bear, A. Verruijt, Modeling groundwater flow and pollution, Vol. ...
  • J.J. Fried, Groundwater pollution mathematical modelling: improvement or stagnation?. Studies ...
  • A.A. Khuri, A Laplace decomposition algorithm applied to a class ...
  • A. Ghorbani, Beyond adomian polynomials: He polynomials. Chaos, Solitons & ...
  • A. Ghorbani, J. Saberi-Nadjafi, He’s homotopy perturbation method for calculating ...
  • D.D. Ganji, A. Sadighi, Application of he’s homotopy-perturbation method to ...
  • L. Cveticanin, Homotopy–perturbation method for pure nonlinear differential equation. Chaos, ...
  • A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of ...
  • I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, ...
  • Z.J. Fu, W. Chen, H.T. Yang, Boundary particle method for ...
  • J.H. He, Homotopy perturbation method: a new nonlinear analytical technique. ...
  • J. Nee, J. Duan, Limit set of trajectories of the ...
  • R.C. Mittal, H. Kaur, V. Mishra, Haar wavelet-based numerical investigation ...
  • Ö. Oruç, F. Bulut, A. Esen, Chebyshev wavelet method for ...
  • A. Ali, K. Shah, Y. Li, R. Khan, Numerical treatment ...
  • A. Jannelli, M. Ruggieri, M.P. Speciale, Exact and numerical solutions ...
  • A. Jannelli, M. Ruggieri, M.P. Speciale, Analytical and numerical solutions ...
  • R.K. Gazizov, A.A. Kasatkin, S.Y. Lukashchuk, Symmetry properties of fractional ...
  • R.K. Gazizov, A.A. Kasatkin, S.Y. Lukashchuk, Group Invariant solutions of ...
  • A. Jannelli, M. Ruggieri, M.P. Speciale, Numerical solutions of space ...
  • P. Zhuang, F. Liu, Implicit difference approximation for the time ...
  • A. Jannelli, M. Ruggieri, M.P. Speciale, Analytical and numerical solutions ...
  • F. Zeng, C. Li, F. Liu, I. Turner, The use ...
  • نمایش کامل مراجع