A comparative performance of gray level image thresholding using normalized graph cut based standard S membership function

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 195

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJFS-16-1_003

تاریخ نمایه سازی: 17 آبان 1400

چکیده مقاله:

In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [۲۵], Kittler [۱۱], Rosin [۲۱], Sauvola [۲۳] and Wolf [۳۳] method. Moreover, we examine that in most cases, our algorithm gives the lowest absolute error that improves the segmentation process of gray images. Finally, we change different parameter values in fuzzy normalized graph cut and the effect of the substitutes is studied. Also, we analyze the computational complexity of fuzzy weight matrix (fuzzification) results with a weight matrix (classical) results. 

نویسندگان

Narayanamoorthy S

Department of Mathematics, Bharathiar University, Coimbatore - ۶۴۱ ۰۴۶, India.

P Karthick

Department of Mathematics, Bharathiar University, Coimbatore-۶۴۱۰۴۶.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • B. Basavaprasad, R. S. Hegadi, Graph theoretical approaches for image ...
  • I. Bloch, Fuzzy sets for image processing and understanding, Fuzzy ...
  • T. Chaira, A. K. Ray, Threshold selection using fuzzy set ...
  • A. Dutta, A. Kar, B. N. Chatterji, Fuzzy set theoretic ...
  • P. Felzenszwalb, D. P. Huttenlocher, Efficient graph-based image segmentation, International ...
  • M. L. Feng, Y. P. Tan, Contrast adaptive binarization of ...
  • M. G. Forero, Fuzzy thresholding and histogram analysis, Fuzzy Filters ...
  • C. A. Glasbey, Ananalysis of histogram-based thresholding algorithms, CVGIP, Graph. ...
  • J. S. R. Jang, C. T. Sun, E. Mizutani, Neuro-fuzzy ...
  • C. Jiang, F. Coenen, Graph-based image classification by weighting scheme, ...
  • J. Kittler, J. Illingworth, and J. Foglein, Threshold selection based ...
  • S. U. Lee, S. Y. Chung, R. H. Park, A ...
  • W. Ma, Y. Zhang, L. Yang, L. Duan, Graph-cut based ...
  • P. Moallem, N. Razmjooy, B. S. Mousavi, Robust potato color ...
  • S. Narayanamoorthy, P. Karthick, The intuitionistic fuzzy set approach for ...
  • W. Niblack, An Introduction to Digital Image Processing, Prentice-Hall, New ...
  • N. Otsu, A threshold selection method from gray-level histograms, IEEE ...
  • N. R. Pal, S. K. Pal, A review on image ...
  • J. R. Parker, Algorithms for Image Processing and Computer Vision, ...
  • C. Prabu, S. V. M. G. Bavithiraja, S. Narayanamoorthy, A ...
  • P. L. Rosin, Unimodal thresholding, Pattern Recognition, ۳۴(۱۱) (۲۰۰۱), ۲۰۸۳–۲۰۹۶ ...
  • P. K. Sahoo, S. Soltani, A. K. C. Wong, A ...
  • J. Sauvola, M. Pietikainen, Adaptive document image binarization, Pattern Recognition, ...
  • M. Seetharama Prasad, T. Divakar, B. Srinivasa Rao, C. Naga ...
  • U. Sesadri, B. Siva Sankar, C. Nagaraju, Fuzzy entropy based ...
  • M. Sezgin, B. Sankur, Survey over image thresholding techniques and ...
  • K. B. Shaw, M. C. Lohrenz, A survey of digital ...
  • J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE ...
  • W. Tao, H. Jin, Y. Zhang, L. Liu, D. Wang, ...
  • H. R. Tizhoosh, Image thresholding using type II fuzzy sets, ...
  • O. J. Tobias, R. Seara, Image segmentation by histogram thresholding ...
  • S.Wang,J.M.Siskind, Image segmentation with ratio cut, IEEE Transactions on Pattern ...
  • C. Wolf, J. M. Jolion, Extraction and recognition of artificial ...
  • L. A. Zadeh, Fuzzy sets, Information Control, ۸ (۱۹۶۵), ۳۳۸–۳۵۳ ...
  • نمایش کامل مراجع