Nordhaus-gaddum type inequalities for tree covering numbers on unitary cayley graphs of finite rings
محل انتشار: فصلنامه معادلات در ترکیبات، دوره: 11، شماره: 2
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 221
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_COMB-11-2_005
تاریخ نمایه سازی: 17 آبان 1400
چکیده مقاله:
The unitary Cayley graph \Gamma_n of a finite ring \mathbb{Z}_n is the graph with vertex set \mathbb{Z}_n and two vertices x and y are adjacent if and only if x-y is a unit in \mathbb{Z}_n. A family \mathcal{F} of mutually edge disjoint trees in \Gamma_n is called a tree cover of \Gamma_n if for each edge e\in E(\Gamma_n), there exists a tree T\in\mathcal{F} in which e\in E(T). The minimum cardinality among tree covers of \Gamma_n is called a tree covering number and denoted by \tau(\Gamma_n). In this paper, we prove that, for a positive integer n\geq ۳ , the tree covering number of \Gamma_n is \displaystyle\frac{\varphi(n)}{۲}+۱ and the tree covering number of \overline{\Gamma}_n is at most n-p where p is the least prime divisor of n. Furthermore, we introduce the Nordhaus-Gaddum type inequalities for tree covering numbers on unitary Cayley graphs of rings \mathbb{Z}_n.
کلیدواژه ها:
نویسندگان
Denpong Pongpipat
Department of Mathematics, Faculty of Science, Khon Kaen University
Nuttawoot Nupo
Department of Mathematics, Faculty of Science, Khon Kaen University