Multi-Task Feature Selection for Speech Emotion Recognition: Common Speaker-Independent Features Among Emotions
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 9، شماره: 3
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 248
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-9-3_001
تاریخ نمایه سازی: 18 مهر 1400
چکیده مقاله:
Feature selection is the one of the most important steps in designing speech emotion recognition systems. Because there is uncertainty as to which speech feature is related to which emotion, many features must be taken into account and, for this purpose, identifying the most discriminative features is necessary. In the interest of selecting appropriate emotion-related speech features, the current paper focuses on a multi-task approach. For this reason, the study considers each speaker as a task and proposes a multi-task objective function to select features. As a result, the proposed method chooses one set of speaker-independent features of which the selected features are discriminative in all emotion classes. Correspondingly, multi-class classifiers are utilized directly or binary classifications simply perform multi-class classifications. In addition, the present work employs two well-known datasets, the Berlin and Enterface. The experiments also applied the openSmile toolkit to extract more than ۶۵۰۰ features. After feature selection phase, the results illustrated that the proposed method selects the features which is common in the different runs. Also, the runtime of proposed method is the lowest in comparison to other methods. Finally, ۷ classifiers are employed and the best achieved performance is ۷۳.۷۶% for the Berlin dataset and ۷۲.۱۷% for the Enterface dataset, in the faced of a new speaker .These experimental results then show that the proposed method is superior to existing state-of-the-art methods.
کلیدواژه ها:
نویسندگان
E. Kalhor
Faculty of Computer Engineering and IT, Sadjad University of Technology, Mashhad, Iran.
B. Bakhtiari
Faculty of Computer Engineering and IT, Sadjad University of Technology, Mashhad, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :