The ۱-D Hermite Shepard and MLS method

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 315

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMCS-1-4_005

تاریخ نمایه سازی: 8 شهریور 1400

چکیده مقاله:

In many applications, one encounters the problem of approximating ۱-D curve and ۲-D surfaces from data given on a set of scattered points. Meshless methods strategy is based on some facts: (۱) deleting mesh generation and re-meshing, (۲) raising smooth degree of solution, (۳) localization by using compact support weights. This research presented three generalizations for ancient pseudo interpolation, localization, appending a complete polynomial to the Shepard average weighted approximation and Hermite form of Shepard and MLS method. The new bases for relevant space of approximants are developed and, when evaluated directly, improves the accuracy of evaluation of the fitted method, especially the Hermite type. In this work, we develop some efficient schemes for computing global or local approximation curves and surfaces interpolating a given smooth data. Then we raise the smooth degree of approximation and use of derivatives data. The Hermite Shepard (HSH) is straightforward and efficient.

کلیدواژه ها:

Local and global interpolation ، Weighted least square ، Singular weights ، Local and global support ، Hermite Shepard method

نویسندگان

Mehrzad Ghorbani

Department of mathematics, qom university of technology

Morteza Garshasbi

elmo sanat univ. mathematics dept