Structural and Crack Parameter Identification on Structures Using Observer Kalman Filter Identification/Eigen System Realization Algorithm
محل انتشار: فصلنامه مکانیک جامد، دوره: 13، شماره: 1
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 246
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JSMA-13-1_006
تاریخ نمایه سازی: 23 مرداد 1400
چکیده مقاله:
Structural and crack parameters in a continuous mass model are identified using Observer Kalman filter Identification (OKID) and Eigen Realization Algorithm (ERA). Markov parameters are extracted from the input and out responses from which the state space model of the structural system is determined using Hankel matrix and singular value decomposition by Eigen Realization algorithm. The structural parameters are identified from the state space model. This method is applied to a lumped mass system and a cantilever which are excited with a harmonic excitation at its free end and the acceleration responses at all nodes are measured. The stiffness and damping parameters are identified from the extracted matrices using Newton-Raphson method on the structure. Later, cracks are introduced in the cantilever and all structural parameters are assumed as known priori, the unknown crack parameters such as normalized crack depth and its location are identified using OKID/ERA. The parameters extracted by using this algorithm are compared with other structural identification methods available in the literature. The main advantage of this algorithm is good accuracy of identified structural parameters.
کلیدواژه ها:
Observer kalman filter identification ، Eigen realization ، Markov parameters ، Newton-raphson ، Structural identification
نویسندگان
P Nandakumar
Mechanical Engineering SRM, Institute of Science and Technology Chennai, India
J Jacob
Mechanical Engineering SRM, Institute of Science and Technology Chennai, India
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :