Reduction of DEA-Performance Factors Using Rough Set Theory: An Application of Companies in the Iranian Stock Exchange
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 328
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_AMFA-5-1_004
تاریخ نمایه سازی: 20 تیر 1400
چکیده مقاله:
he financial management field has witnessed significant developments in recent years to help decision makers, managers and investors, to made optimal decisions. In this regard, the institutions investment strategies and their evaluation methods continuously change with the rapid transfer of information and access to the fi- nancial data. When information is available as several inputs and output factors, the data envelopment analysis (DEA) applies to calculate the efficiency of com- panies. Distinguishing efficient companies from inefficient ones, makes it possi- ble for the financial managers to select suitable portfolios. The discriminating power of DEA depends on the number of companies under evaluation and the number of inputs and outputs. When the number of inputs and outputs are high compared to the number of units, most of the units will be evaluated as efficient, thus the discriminating power of DEA decreases and the results are not reliable. To deal with this problem, the Quick-Reduct algorithm of the rough set theory (RST) was used in this study to reduce inputs or outputs. It should be noted that the advantage of this algorithm is its ability to use negative data.
کلیدواژه ها:
نویسندگان
Mahnaz Mirbolouki
Department of Mathematics, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
Maryam Joulaei
Department of Mathematics, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :