Using Contingency Approach to Improve Firms’ Financial Performance Forecasts
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 309
فایل این مقاله در 20 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_AMFA-6-2_010
تاریخ نمایه سازی: 20 تیر 1400
چکیده مقاله:
One of the challenging issues for investors and professionals is appropriate models to evaluate financial situation of the firms. In this regard, many models have been extracted by researchers using different financial ratios to resolve these issues. However, choosing a model based on the conditions and users’ needs is complex. The main objective of this study is to identify the effect of contingency variables on the firms’ financial performance forecasting models. The statistical population of the research includes all firms listed in Tehran Stock Exchange during the period ۲۰۱۱-۲۰۱۸, among which ۱۵۴ firms were selected. The research data were collected from firm's financial statements and other source. Multiple Discriminant Analysis and Logit Regression model were used to test the research hypotheses. According to the results of discriminant analysis, environmental uncertainty and firm size positively improve the predictive power of the firm's financial performance, and business strategy and business competition don’t improve the predictive power of the firm's financial performance. Also, the results of logit regression indicated that environmental uncertainty, business strategy, and firm size improve predictive power of the firm's financial performance; but, business competition don’t improve predictive power of the model. The results of comparing the two methods showed that the Discriminant analysis method outperformed the logistic regression method.
کلیدواژه ها:
نویسندگان
Saman Mousanezhad
Department of Financial Management, Ilam Branch, Islamic Azad University, Ilam, Iran
Esfandyar Mohammadi
Department of Management, Faculty of Literature and Human Science, Ilam University, Ilam, Iran
Rahmatolah Mohammadipour
Department of Accounting, Faculty of Literature and Human Science, Ilam University, Ilam, Iran
Farshad Sabzalipour
Department of Accounting, Ilam Branch, Islamic Azad University, Ilam, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :