Enhanced Adsorption of Aromatic Hydrocarbon-contaminated Aquifer Using Granular Nano Zero-valent Iron

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 184

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJEE-12-2_006

تاریخ نمایه سازی: 20 تیر 1400

چکیده مقاله:

Aromatic hydrocarbons are toxic pollutants that enter into environment through various industries. These pollutants are carcinogenic and cause genetic mutations. There are various solutions, including biological methods, extraction, and electrocoagulation. This research aims to synthesize the nano zero-valent iron (nZVI) from the ferrous waste and granules of nZVI by the chemical combination of nZVI with polyvinyl alcohol (PVA). The performance of these two adsorbents was evaluated to degradation of phenol from an aqueous solution. The physical properties of the synthesized nanoparticles were determined using SEM analysis. Effect of pH, contact time, contaminant concentration, and adsorbent dosage on the removal efficiency were studied. The results showed that the maximum removal efficiency of phenol by nZVI and GnZVI was ۷۸, ۵۷.۸۳ %, respectively, at the condition of pH ۳, ۶۰ minutes initial concentration of ۸ ppm and adsorbent dosage of ۲.۵ g. The removal efficiency of phenol in acidic conditions and laboratory temperature by adsorption of nZVI is higher than GnZVI with a difference in removal efficiency of approximately ۲۰ %. Equilibrium isotherms were analyzed by Langmuir and Freundlich equations and it was observed that these experiments followed Freundlich model.

کلیدواژه ها:

نویسندگان

D. Yousefi Kebria

Department of Environmental Engineering, Civil Engineering Faculty, Babol Noshirvani University of Technology, Babol, Iran

S. Mokhtarpour

Department of Environmental Engineering, Civil Engineering Faculty, Babol Noshirvani University of Technology, Babol, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :