ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
ناشر تخصصی کنفرانسهای ایران
ورود |عضویت رایگان |راهنمای سایت |عضویت کتابخانه ها
عنوان
مقاله

بهینه سازی تخصیص منابع مه در اینترنت اشیا با رویکرد یادگیری تقویتی عمیق

سال انتشار: 1400
کد COI مقاله: IRANWEB07_026
زبان مقاله: فارسیمشاهده این مقاله: 220
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 10 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله بهینه سازی تخصیص منابع مه در اینترنت اشیا با رویکرد یادگیری تقویتی عمیق

دانوش چمنی - دانش آموخته ی کارشناسی مهندسی کامپیوتر-هوش مصنوعی، گروه مهندسی کامپیوتر، دانشکده ی مهندسی پردیس فارابی، دانشگاه تهران
پارسا وفایی - دانش آموخته ی کارشناسی مهندسی کامپیوتر-هوش مصنوعی، گروه مهندسی کامپیوتر، دانشکده ی مهندسی پردیس فارابی، دانشگاه تهران
زهرا موحدی - استادیار، گروه مهندسی کامپیوتر، دانشکده ی مهندسی پردیس فارابی، دانشگاه تهران

چکیده مقاله:

محاسبات مه یک پارادایم نوظهور است که مفهوم ابر را تا لبه گسترش می دهد. این پارادایم، منابع محاسباتی، ذخیره سازی، کنترل و قابلیتهای شبکه را برای تحقق برنامه های کاربردی اینترنت اشیا فراهم می کند. در مفهوم محاسبات مه، دستگاه های اینترنت اشیا، داده ها و محاسبات پیچیده را به گره های مه در اطرافشان بارگذاری می کنند. در این مقاله، به مسئله ی تخصیص بهینه منابع محدود گره های مه به برنامه های اینترنت اشیا می پردازیم. در واقع، مسئله ی تخصیص منابع را می توان به صورت یک سیستم تصمیم گیری آنلاین در نظر گرفت که در آن گره های مه باید تصمیم بگیرند که آیا درخواست های دریافتی از دستگاه های اینترنت اشیا را به صورت محلی پردازش کنند یا آن ها را به گره های ابر در فواصل دور فرستند. رویکردهای کنونی برای تخصیص منابع مه از انطباق پذیری کافی در محیط های دارای نویز و عدم قطعیت برخوردار نیستند. به همین منظور، وجود الگوریتم های متکی به یادگیری در این حوزه امری ضروری است. در این مقاله، در مرحله ی اول مسئله تخصیص منابع مه به عنوان یک فرایند تصمیم گیری مارکوف مدلسازی شده است. سپس روشی بر پایه ی رویکرد یادگیری تقویتی عمیق جهت حل این مسئله پیشنهاد شده است. در واقع، بر اساس الگوریتم گرادیان سیاست، گره های مه یاد میگیرند که چگونه وظایف IoT را به روشی بهینه برنامه ریزی کنند.روش پیشنهادی با رویکرد غیر یادگیری مقایسه شده است که در آن وظایف بر اساس طول اجرایشان و بدون در نظر گرفتن اولویت وظایف، به گره های مه تخصیص داده می شوند. نتایج به دست آمده با توجه به پاداش تجمعی در طول فرایند اجرای الگوریتم پیشنهادی، حاکی از یادگیری سیاست تخصیص منابع بهصورت برخط است. این امر منجر به بهبود معیارهای میانگین تاخیر و میانگین تاخیر در شرایط سخت برای سیستمی با اولویت های مختلف وظایف، در مقایسه با روش غیر یادگیری میشود.

کلیدواژه ها:

کد مقاله/لینک ثابت به این مقاله

کد یکتای اختصاصی (COI) این مقاله در پایگاه سیویلیکا IRANWEB07_026 میباشد و برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/1236908/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
چمنی، دانوش و وفایی، پارسا و موحدی، زهرا،1400،بهینه سازی تخصیص منابع مه در اینترنت اشیا با رویکرد یادگیری تقویتی عمیق،هفتمین کنفرانس بین المللی وب پژوهی،تهران،https://civilica.com/doc/1236908

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1400، چمنی، دانوش؛ پارسا وفایی و زهرا موحدی)
برای بار دوم به بعد: (1400، چمنی؛ وفایی و موحدی)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: 67,801
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی