Parameter estimation in fuzzy partial univariate linear regression model with non-fuzzy inputs and triangular fuzzy outputs

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 291

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJFS-18-2_005

تاریخ نمایه سازی: 30 خرداد 1400

چکیده مقاله:

This paper proposed an extension for the classical partial univariate regression model with non-fuzzy inputs and triangular fuzzy output. For this purpose, the popular non-parametric estimator and  the conventional arithmetic operations of triangular fuzzy numbers were combined to construct a fuzzy univariate regression model. Then, a hybrid algorithm was developed to estimate the bandwidth  and fuzzy regression coefficient. Some common goodness-of-fit criteria were also used to examine the performance of the proposed method. The effectiveness of the proposed method was then illustrated through two numerical examples including a simulation study. The proposed method was also compared with several common fuzzy linear regression models with exact inputs and fuzzy outputs. Compared to the available fuzzy linear regressions models, the numerical results clearly indicated that the proposed fuzzy regression model is capable of exhibiting more accurate performances.

کلیدواژه ها:

نویسندگان

G. Hesamian

Department of Statistics, Payame Noor University, Tehran ۱۹۳۹۵-۳۶۹۷, Iran

M. G. Akbari

Department of Statistics, University of Birjand, Birjand, Iran

M. Shams

Department of Statistics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran.