SEMI-SUPERVISED GAN USING SPARSE SWITCHABLE NORMALIZATION FOR BREAST CANCER CLASSIFICATION
سال انتشار: 1400
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 628
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ECMCONF05_041
تاریخ نمایه سازی: 29 خرداد 1400
چکیده مقاله:
An automatic image recognition system for histopathology, such as a deep neural network (DNN), plays a crucial role in speeding up diagnosis and reducing the error rate. The lack of histopathology data is an obstacle for DNN training, and labeled data collection involves considerable human effort and/or time-consuming experiments. In this paper, we propose a semi-supervised generative adversarial network (SGAN) to diagnose breast cancer from the histopathology images. We incorporate a small amount of labeled data with a large amount of the unlabeled data. Our proposed SGAN creates many fake images to compensate for the lack of images in histopathology images, thus outperforming a traditional convolution neural network (CNN). We apply the sparse switchable normalization (SSN) instead of general batch normalization to improve the performance. Experimental results demonstrate that our proposed model on invasive ductal carcinoma (IDC) dataset significantly improves the performance
کلیدواژه ها:
نویسندگان
Hanieh Hasani
Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
Fatemeh Afsari
Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran