Improved Object Matching in Multi-Objects Tracking Based On Zernike Moments and Combination of Multiple Similarity Metrics
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 34، شماره: 6
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 383
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-34-6_008
تاریخ نمایه سازی: 12 خرداد 1400
چکیده مقاله:
In video surveillance, multiple objects tracking (MOT) is a challenging task due to object matching problem in consecutive frames. The present paper aims to propose an improved object matching approach in MOT based on Zernike Moments and combination of multiple similarity distance metrics. In this work, the object is primarily detected using background subtraction method while the Gaussian Mixture Model (GMM) is applied for object extraction in the next frames. Subsequently, the color histogram and the magnitude of Zernike moments of the objects are calculated. In the next step, the objects are matched in the current and the previous frames based on the Hausdorff distance between objects, Earth Mover's (EMD) distance between their color histograms, and Chi-square distance between their Zernike moments. Then, a voting mechanism is designed to find the best consensus object matching from the aforementioned metrics. Eventually, the location of each object is predicted by the Kalman filter to continue tracking in subsequent frames. The results show that the object tracking and matching performance is improved using the proposed method in the video sequences of the multi-camera pedestrian "EPFL" video dataset. Specifically, errors caused by the merging of targets are reduced in the proposed tracking process.
کلیدواژه ها:
نویسندگان
A. Dadgar
Department of Electrical & Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran
Y. Baleghi
Department of Electrical & Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran
M. Ezoji
Department of Electrical & Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :