An Approach for Solving Signal Cancellation Problem in Spherical Microphone Array
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 256
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JECEI-9-2_004
تاریخ نمایه سازی: 12 خرداد 1400
چکیده مقاله:
Background and Objectives: One major problem in the minimum power distortionless response (MPDR) beamformer is the signal cancellation problem, i.e., the desired signal is canceled by the reflected signal, even though the distortionless response constraint is satisfied. Solving this problem is the objective of this paper. Methods: It is well known that the signal cancellation problem can be avoided by minimizing the cross-spectrum matrix of noise, i.e., using the minimum variance distortionless response (MVDR) beamformer. But, in the case of disturbance signals which have correlation with the desired signal, estimation of this matrix is a challenging problem. In this paper we propose an approach for estimating the cross-spectrum matrix of noise signal from which we can solve the signal cancellation problem. Results: Simulation examples show that using the proposed method we can bypass the signal cancellation problem completely. Conclusion: A common belief is that in the case of a disturbance that is a reflected version of the desired signal, due to cohesive appearance and disappearance of both the disturbance and the desired signal, the estimation of cross-spectrum matrix of noise signal is typically not possible in practice. So, based on this common belief, we can’t use the MVDR beamformer in this case. In this paper, we show that this common belief is a fault. We propose a general approach for estimating the cross-spectrum matrix of noise signal that is applicable even in the case of correlated disturbances.
کلیدواژه ها:
Spherical microphone array ، Beamforming ، Signal cancellation problem ، Cross-spectrum matrix of noise
نویسندگان
M. Kalantari
Artificial Intelligence Department, Faculty of Computer Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :