Role of the glutamatergic system of ventrolateral periaqueductal gray (vlPAG) in the cardiovascular responses in normal and hemorrhagic conditions in rats

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 344

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJBMS-24-5_004

تاریخ نمایه سازی: 18 اردیبهشت 1400

چکیده مقاله:

Objective(s): Periaqueductal gray (PAG) is a mesencephalic area divided into four columns including ventrolateral periaqueductal gray (vlPAG). vlPAG plays a role in cardiovascular regulation during normal and hemorrhagic (Hem) conditions. Due to presence of glutamate in this area, we evaluated the effect of glutamatergic receptors of this area on cardiovascular activity in normotensive and hypovolemic Hem rats.Materials and Methods: Animals were divided into twelve groups: saline (vehicle), Glutamate, GYK۵۲۴۶۶ (non-NMDA receptor antagonist), and MK۸۰۱ (NMDA receptor antagonist) with and without Glu microinjected into vlPAG in normal and Hem conditions. Following the femoral artery cannulating and microinjecting, changes (Δ) of heart rate (HR), systolic blood pressure (SBP), and mean arterial pressure (MAP) were recorded via a PowerLab unit.Results: In normotensive conditions, microinjection of Glu increased ΔMAP, ΔSBP, and ΔHR (p <۰.۰۰۱). MK-۸۰۱ and GYKI-۵۲۴۶۶ nonsignificant reduced cardiovascular responses than vehicle while their changes were significant compared with glutamate (p <۰.۰۰۱). Co-injection of GYKI- ۵۲۴۶۶ with Glu did not significantly reduce ΔSBP and ΔMAP induced by Glu (P>۰.۰۵) but co-injection of MK-۸۰۱ with Glu significantly attenuate these effects(p <۰.۰۱). In Hem, Glu increased ΔSBP, ΔMAP, and ΔHR (p <۰.۰۵). GYKI-۵۲۴۶۶ alone did not change cardiovascular responses but MK-۸۰۱ decreased ΔSBP than Hem (p <۰.۰۱). Co-injection of GYKI-۵۲۴۶۶ with Glu had significant(p <۰.۰۵) but MK-۸۰۱ with Glu had no significant effect compared with Hem (P>۰.۰۵).Conclusion: The glutamatergic system of vlPAG increases cardiovascular values that are mostly mediated through the NMDA receptor. Since vlPAG is well known as an inhibitory region, it seems that glutamate does not have a noteworthy cardiovascular role in vlPAG during Hem and normal conditions.

نویسندگان

Vida Alikhani

Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Reza Mohebbati

Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Mahmoud Hosseini

Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Abolfazl Khajavirad

Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

Mohammad Naser Shafei

Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • 1. Lagatta DC, Ferreira‐Junior NC, Deolindo M, Corrêa FM, Resstel ...
  • 2. Dampney R. Emotion and the cardiovascular system: postulated role ...
  • 3. Wright KM, Jhou TC, Pimpinelli D, McDannald MA. Cue-inhibited ...
  • 4. Hao S, Yang H, Wang X, He Y, Xu ...
  • 5. Kroeger D, Bandaru SS, Madara JC, Vetrivelan R. Ventrolateral ...
  • 6. Sun Y, Wang J, Liang S-H, Ge J, Lu ...
  • 7. Tjen-A-Looi SC, Li P, Longhurst JC. Midbrain vlPAG inhibits ...
  • 8. Barbosa RM, Speretta GF, Dias DPM, Ruchaya PJ, Li ...
  • 9. Vagg DJ, Bandler R, Keay KA. Hypovolemic shock: critical ...
  • 10. Shafei MN, Nasimi A, Alaei H, Pourshanazari AA. The ...
  • 11. Deolindo M, Pelosi GG, Tavares RF, Corrêa FMA. The ...
  • 12. Takahashi M, Hayashi Y, Tanaka J. Glutamatergic modulation of ...
  • 13. Yamaguchi Ki, Yamada T. Involvement of anteroventral third ventricular ...
  • 14. Samineni VK, Grajales-Reyes JG, Copits BA, O’Brien DE, Trigg ...
  • 15. Pajolla GP, de Aguiar Corrêa FM. Cardiovascular responses to ...
  • 16. Yang Y, Lu F, Zhuang L, Yang S, Kong ...
  • 17. Okada M, Fukuyama K, Nakano T, Ueda Y. Pharmacological ...
  • 18. Mohebbati R, Hosseini M, Khazaei M, Khajavirad A, Shafei ...
  • 19. Paxinos G, Watson C. The rat brain in stereotaxic ...
  • 20. Shafei MN, Nasimi A. Effect of glutamate stimulation of ...
  • 21. Martin DS, Haywood JR. Sympathetic nervous system activation by ...
  • 22. Geambasu A, Krukoff TL. Adrenomedullin acts in the lateral ...
  • 23. Donevan SD, Rogawski MA. GYKI 52466, a 2, 3-benzodiazepine, ...
  • 24. Ahlgren J, Porter K, Hayward LF. Hemodynamic responses and ...
  • 25. Shafei MN, Nasimi A, Alaei H, Pourshanazari AA, Hosseini ...
  • 26. Lagatta DC, Ferreira-Junior NC, Deolindo M, Corrêa FM, Resstel ...
  • 27. Deolindo MV, Pelosi GG, Busnardo C, Resstel LB, Corrêa ...
  • 28. Depaulis A, Bandler R. The midbrain periaqueductal gray matter: ...
  • 29. Riedel G, Platt B, Micheau J. Glutamate receptor function ...
  • 30. Altevogt BM, Davis M, Pankevich DE. Glutamate-Related biomarkers in ...
  • 31. Nakanishi S, Nakajima Y, Masu M, Ueda Y, Nakahara ...
  • 32. Bereiter DA. Microinjections of glutamate within trigeminal subnucleus interpolaris ...
  • 33. Len W-B, Chan SH, Chan JY. Parabrachial nucleus induces ...
  • 34. Guyenet PG. The sympathetic control of blood pressure. Nat ...
  • 35. Zoccal DB, Furuya WI, Bassi M, Colombari DS, Colombari ...
  • 36. Sweazey RD. Distribution of aspartate and glutamate in the ...
  • 37. Nasimi A, Shafei M, Alaei H. Glutamate injection into ...
  • 38. Tu Y-C, Yang Y-C, Kuo C-C. Modulation of NMDA ...
  • 39. Taylor NE, Pei J, Zhang J, Vlasov KY, Davis ...
  • 40. Henderson L, Keay K, Bandler R. The ventrolateral periaqueductal ...
  • 41. Dean C. Sympathoinhibition from ventrolateral periaqueductal gray mediated by ...
  • 42. Dean C. Hemorrhagic sympathoinhibition mediated through the periaqueductal gray ...
  • 43. Zhu H, Xiang H-C, Li H-P, Lin L-X, Hu ...
  • 44. Guyenet PG, Stornetta RL, Holloway BB, Souza GM, Abbott ...
  • 45. Berthoud H-R, Patterson LM, Sutton GM, Morrison C, Zheng ...
  • 46. Wiklund L, Behzadi G, Kalén P, Headley PM, Nicolopoulos ...
  • 47. Wang W, Lovick T. The inhibitory effect of the ...
  • 48. Mokhtar M, Singh P. Neuroanatomy, periaqueductal gray. StatPearls [Internet]: ...
  • 49. Talman W. Glutamatergic transmission in the nucleus tractus solitarii: ...
  • 50. Busnardo C, Crestani C, Fassini A, Resstel L, Corrêa ...
  • 51. Dávalos A, Shuaib A, Wahlgren NG. Neurotransmitters and pathophysiology ...
  • 52. Yamaguchi Ki, Watanabe K. Anteroventral third ventricular N-methyl-D-aspartate receptors, ...
  • 53. Takemoto Y. Amino acids that centrally influence blood pressure ...
  • 54. Cavun S, Resch GE, Evec AD, Rapacon-Baker MM, Millington ...
  • 55. Kung L-H, Glasgow J, Ruszaj A, Gray T, Scrogin ...
  • 56. Dean C, Bago M. Renal sympathoinhibition mediated by 5-HT1Areceptors ...
  • 57. Floyd NS, Keay KA, Arias CM, Sawchenko PE, Bandler ...
  • 58. Yang Z, Coote J. Paraventricular nucleus influence on renal ...
  • 59. Li C-S, Smith DV. Glutamate Receptor Antagonists block gustatory ...
  • 60. Ohta H, Talman WT. Both NMDA and non-NMDA receptors ...
  • نمایش کامل مراجع