ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
ناشر تخصصی کنفرانسهای ایران
ورود |عضویت رایگان |راهنمای سایت |عضویت کتابخانه ها
عنوان
مقاله

Forecasting SARS-CoV-۲ Next Wave in Iran and the World Using TSK Fuzzy Neural Networks

سال انتشار: 1399
کد COI مقاله: HSEBCNF03_007
زبان مقاله: انگلیسیمشاهده این مقاله: 212
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 8 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Forecasting SARS-CoV-۲ Next Wave in Iran and the World Using TSK Fuzzy Neural Networks

Seyed Muhammad Hossein Mousavi - Dept of Computer Engineering, Bu Ali Sina University
S. Muhammad Hassan Mosavi - Department of Art, University of Applied Sciences

چکیده مقاله:

Based on World Health Organization (WHO) report, ۴۶۴,۵۹۶ confirmed, ۲۶,۵۶۷ death and ۳۹۲,۲۹۳ recovered cases of Severe acute respiratory syndrome coronavirus ۲ (SARS-CoV-۲) or COVID-۱۹ are reported as of October ۶, ۲۰۲۰ for Iran. This virus became pandemic in March ۱۱, ۲۰۱۹ and spread worldwide. Due to the absence of specific vaccine, non-pharmacological interventions like social distancing, using disinfectants and wearable masks and gloves are essential till finding an absolute solution. But during this time, Artificial Intelligence methods could aid the available methods to reduce the number of confirmed cases by forecasting the future based on available data from people of a specific region. Fortunately, there are considerable number of up to data datasets of COVID-۱۹ which contain time-series data. Three best of these datasets are John Hopkins University, WHO and European Centre for Disease Prevention and Control datasets which this paper is employed them for experiment. This paper uses Takagi Sugeno Kang Fuzzy Neural Networks forecasting system on mentioned datasets for duration between two waves which is around ۳.۵ months. Some of the validation metrices are Mean Absolute Percentage Error (MAPE), Explained Variance (EV), and Root Mean Squared Log Error (RMSLE). By forecasting the first wave data for the second wave, highly similar to second wave data are forecasted by the proposed system which, makes this system robust and applicable for future waves.

کلیدواژه ها:

COVID-۱۹, Forecasting, World Health Organization, Time-Series, Fuzzy Neural Networks

کد مقاله/لینک ثابت به این مقاله

کد یکتای اختصاصی (COI) این مقاله در پایگاه سیویلیکا HSEBCNF03_007 میباشد و برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/1195835/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Mousavi, Seyed Muhammad Hossein and Mosavi, S. Muhammad Hassan,1399,Forecasting SARS-CoV-۲ Next Wave in Iran and the World Using TSK Fuzzy Neural Networks,Third National Conference on Safety and Health,Tehran,,,https://civilica.com/doc/1195835

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1399, Mousavi, Seyed Muhammad Hossein؛ S. Muhammad Hassan Mosavi)
برای بار دوم به بعد: (1399, Mousavi؛ Mosavi)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه دولتی
تعداد مقالات: 9,267
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

مقالات مرتبط جدید

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی