A generalization of global dominating function
محل انتشار: فصلنامه معادلات در ترکیبات، دوره: 8، شماره: 1
سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 271
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_COMB-8-1_005
تاریخ نمایه سازی: 14 اردیبهشت 1400
چکیده مقاله:
Let $G$ be a graph. A function $f : V (G) \longrightarrow \{۰,۱\}$, satisfying the condition that every vertex $u$ with $f(u) = ۰$ is adjacent with at least one vertex $v$ such that $f(v) = ۱$, is called a dominating function $(DF)$. The weight of $f$ is defined as $wet(f)=\Sigma_{v \in V(G)} f(v)$. The minimum weight of a dominating function of $G$ is denoted by $\gamma (G)$, and is called the domination number of $G$. A dominating function $f$ is called a global dominating function $(GDF)$ if $f$ is also a $DF$ of $\overline{G}$. The minimum weight of a global dominating function is denoted by $\gamma_{g}(G)$ and is called global domination number of $G$. In this paper we introduce a generalization of global dominating function. Suppose $G$ is a graph and $s\geq ۲$ and $K_n$\ is the complete graph on $V(G)$. A function $ f:V(G)\longrightarrow \{ ۰,۱\} $ on $G$ is $s$-dominating function $(s-DF)$, if there exists some factorization $\{G_۱,\ldots,G_s \}$ of $K_n$, such that $G_۱=G$ \ and $f$\ is dominating function of each $G_i$.
کلیدواژه ها:
نویسندگان
Mostafa Momeni
Department of Mathematics, Shahid Rajaee Teacher Training University, P.O. Box ۱۶۷۸۵-۱۶۳, Tehran, Iran
Ali Zaeembashi
Department of math, Shahid Rajaee Teacher Training University, Tehran, Iran