ناشر تخصصی کنفرانس های ایران

لطفا کمی صبر نمایید

Publisher of Iranian Journals and Conference Proceedings

Please waite ..
CIVILICAWe Respect the Science
ناشر تخصصی کنفرانسهای ایران
عنوان
مقاله

Simultaneous Classification and Traction of Moving Obstacles by LIDAR And Camera Using Bayesian Algorithm

سال انتشار: 1398
کد COI مقاله: JR_JACR-10-4_002
زبان مقاله: انگلیسیمشاهد این مقاله: 12
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

خرید و دانلود فایل مقاله

با استفاده از پرداخت اینترنتی بسیار سریع و ساده می توانید اصل این مقاله را که دارای 12 صفحه است به صورت فایل PDF در اختیار داشته باشید.
آدرس ایمیل خود را در کادر زیر وارد نمایید:

مشخصات نویسندگان مقاله Simultaneous Classification and Traction of Moving Obstacles by LIDAR And Camera Using Bayesian Algorithm

Masrour Dowlatabadi - Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Ahmad Afshar - Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
Ali Moarefianpour - Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

چکیده مقاله:

Shortly, preventing collisions with fixed or moving, alive, and inanimate obstacles will appear to be a severe challenge due to the increased use of Unmanned Ground Vehicles (UGVs). Light Detection and Ranging (LIDAR) sensors and cameras are usually used in UGV to detect obstacles. The tracing and classification of moving obstacles is a significant dimension in developed driver assistance systems. The present study indicated a multi-hypotheses monitoring and classifying approach, which allows solving ambiguities rising with the last methods of associating and classifying targets and tracks in a highly volatile vehicular situation. We proposed a recursive method based on Bayesian Algorithm for using classification information of obstacles in the tracking information of them and vice versa. The results are shown that the proposed method can improve classifying and tracking together.This method was tested through real data from various driving scenarios and focusing on two obstacles of interest vehicle and pedestrian.

کلیدواژه ها:

Bayesian Algorithm, Simultaneous classification and traction, LIDAR sensor and camera

کد مقاله/لینک ثابت به این مقاله

برای لینک دهی به این مقاله می توانید از لینک زیر استفاده نمایید. این لینک همیشه ثابت است و به عنوان سند ثبت مقاله در مرجع سیویلیکا مورد استفاده قرار میگیرد:

https://civilica.com/doc/1194345/

نحوه استناد به مقاله:

در صورتی که می خواهید در اثر پژوهشی خود به این مقاله ارجاع دهید، به سادگی می توانید از عبارت زیر در بخش منابع و مراجع استفاده نمایید:
Dowlatabadi, Masrour and Afshar, Ahmad and Moarefianpour, Ali,1398,Simultaneous Classification and Traction of Moving Obstacles by LIDAR And Camera Using Bayesian Algorithm,,,,,https://civilica.com/doc/1194345

در داخل متن نیز هر جا که به عبارت و یا دستاوردی از این مقاله اشاره شود پس از ذکر مطلب، در داخل پارانتز، مشخصات زیر نوشته می شود.
برای بار اول: (1398, Dowlatabadi, Masrour؛ Ahmad Afshar and Ali Moarefianpour)
برای بار دوم به بعد: (1398, Dowlatabadi؛ Afshar and Moarefianpour)
برای آشنایی کامل با نحوه مرجع نویسی لطفا بخش راهنمای سیویلیکا (مرجع دهی) را ملاحظه نمایید.

مدیریت اطلاعات پژوهشی

صدور گواهی نمایه سازی | گزارش اشکال مقاله | من نویسنده این مقاله هستم

اطلاعات استنادی این مقاله را به نرم افزارهای مدیریت اطلاعات علمی و استنادی ارسال نمایید و در تحقیقات خود از آن استفاده نمایید.

علم سنجی و رتبه بندی مقاله

مشخصات مرکز تولید کننده این مقاله به صورت زیر است:
نوع مرکز: دانشگاه آزاد
تعداد مقالات: 29,879
در بخش علم سنجی پایگاه سیویلیکا می توانید رتبه بندی علمی مراکز دانشگاهی و پژوهشی کشور را بر اساس آمار مقالات نمایه شده مشاهده نمایید.

به اشتراک گذاری این صفحه

اطلاعات بیشتر درباره COI

COI مخفف عبارت CIVILICA Object Identifier به معنی شناسه سیویلیکا برای اسناد است. COI کدی است که مطابق محل انتشار، به مقالات کنفرانسها و ژورنالهای داخل کشور به هنگام نمایه سازی بر روی پایگاه استنادی سیویلیکا اختصاص می یابد.

کد COI به مفهوم کد ملی اسناد نمایه شده در سیویلیکا است و کدی یکتا و ثابت است و به همین دلیل همواره قابلیت استناد و پیگیری دارد.

پشتیبانی