Determination of the Most Important Diagnostic Criteria for COVID-۱۹: A Step forward to Design an Intelligent Clinical Decision Support System
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 321
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ZUMS-29-134_007
تاریخ نمایه سازی: 11 اردیبهشت 1400
چکیده مقاله:
Background & Objective: Since the clinical and epidemiologic characteristics of coronavirus disease ۲۰۱۹ (COVID-۱۹) is not well known yet, investigating its origin, etiology, diagnostic criteria, clinical manifestations, risk factors, treatments, and other related aspects is extremely important. In this situation, clinical experts face many uncertainties to make decision about COVID-۱۹ prognosis based on their judgment. Accordingly, this study aimed to determine the diagnostic criteria for COVID-۱۹ as a prerequisite to develop clinical diagnostic models.
Materials & Methods: In this retrospective study, the Enter method of the binary logistic regression (BLR) and the Forward Wald method were used to measure the odds ratio (OR) and the strength of each criterion, respectively. P-value<۰.۰۵ was considered as statistically significant for bivariate correlation coefficient.
Results: Phi-Crammer’s examination test showed that ۱۲ diagnostic criteria were statistically important; measuring OR revealed that six criteria had the best diagnostic power. Finally, true classification rate and the area under receiver operative characteristics curve (AUC) were calculated as ۹۰.۲۵% and ۰.۸۳۵, respectively.
Conclusion: Identification of diagnostic criteria has become the standard approach for disease modeling; it helps to design decision support tools. After analyzing and comparing six diagnostic performance measures, we observed that these variables have a high diagnostic power for COVID-۱۹ detection.
کلیدواژه ها:
نویسندگان
Mostafa Shanbehzadeh
Dept. of Health Information Technology, School of Paramedical, Ilam University of Medical Sciences, Ilam, Iran
Raoof Nopour
Dept. of Health Information Technology and Management, School of Paramedical, Tehran University of Medical Sciences, Tehran, Iran
Hadi kazemi-arpanahi
Dept. of Health Information Technology, Abadan Faculty of Medical Sciences, Abadan, Iran | Dept. of Student Research Committee, Abadan Faculty of Medical Sciences, Abadan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :