Assessing the Prediction Power of Plasma Neutrophil Gelatinase-Associated Lipocalin and Serum Cystatin C for Diagnosis Kidney Damage

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 412

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ZUMS-27-122_005

تاریخ نمایه سازی: 11 اردیبهشت 1400

چکیده مقاله:

Background & Objective: Chronic Kidney Disease (CKD) has been recognized as a serious public health threat. The early detection of kidney damage in CKD is a useful way to reduce the disease burden. This study aimed to determine the power of Neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C (Cys-C) to predict the kidney damage in Iranian patients. Materials & Methods: This study was conducted at Shohadaye Tajrish Hospital on ۷۲ renal patients. The estimated glomerular filtration rate (GFR) was assumed as the gold standard method. The NGAL and Cys-C were used as predictors and estimated GFR was used as a response variable. Three logistic regression models were fitted to investigate the impact of single and multiple markers for the prediction of GFR status. Results: The regression models with NGAL and Cys-C as single predictors, and with both of them as multivariate predictors, were fitted to the data. The markers except for Cys-C were significantly related to the renal damage in all models (P<۰.۰۵). The obtained odds ratio for the model with NGAL, Cys-Cand both NGAL and Cys-C were ۱.۱۴۲, ۱.۰۰۴ and ۱.۱۲۵, respectively. The sensitivity and specificity of the models with NGAL, Cys-C and both of them were ۹۶.۰۰ and ۱۰۰.۰۰; ۶۴.۰۰ and ۹۷.۸۷; and ۹۶.۰۰ and ۱۰۰, respectively.  Conclusion: Our findings revealed that the NGAL biomarker as a single predictor could result in high predictor power for classifying the patients with and without kidney damage. Thus, the clinicians can use this marker for the early prediction of this renal problem.

کلیدواژه ها:

نویسندگان

فاطمه مصائبی

Dept. of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

مهدی عزیزمحمدی لوها

Dept. of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

ملیحه نصیری

Faculty of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran

فرانک کازرونی

Dept. of Laboratory Medicine, School of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

فرید زیاری

Proteomics Research Center and Dept. of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

فاطمه قریشوندی

Dept. of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Nogueira A, Pires MJ, Oliveira PA. Pathophysiological mechanisms of renal ...
  • Clyne N, Hellberg M, Kouidi E, Deligiannis A, Höglund P. ...
  • Boissier R, Sichez PC, Tran S, Delaporte V, Karsenty G, ...
  • Shirazian S, Aina O, Park Y, et al. Chronic kidney ...
  • Webster AC, Nagler EV, Morton RL, Masson Ph. Chronic kidney ...
  • Pezeshgi A, Ghodrati S, Kiafar M, Kamali K, Asadi-Khiavi M. ...
  • Ku E, Glidden DV, Johansen KL, et al. Association between ...
  • Chan T-C, Zhang Z, Lin BCh, et al. Long-term exposure ...
  • Li PKT, Lui SL, Ng JKCh, et al. Addressing the ...
  • Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after ...
  • Jha V, Garcia G, Iseki KSH, et al. Chronic kidney ...
  • Lozano R, Naghavi M, Foreman K, et al. Global and ...
  • Luyckx VA, Tonelli M, J.W.J.B.o.t.W.H.O. Stanifer. The global burden of ...
  • Saber A, Naghibzadeh Tahami A, Najafipour H, Azmandian J. Assessment ...
  • De Nicola L, Minutolo RJKI. Worldwide growing epidemic of CKD: ...
  • Levey AS, LAJAJoKD Inke. GFR as the "gold standard": estimated, ...
  • Alkandari O, Hebert D, Langlois V, Robinson L A, Parekh ...
  • Bretagne M, Jouinot A, Durand JP, et al. Estimation of ...
  • Qiu X, Liu CH , Ye Y, et al. The ...
  • Kirsch AH, Rosenkranz AR. Pre-chronic Kidney Disease (CKD)? Is It ...
  • Antonucci E, Lippi G, Ticinesi A, et al. Neutrophil gelatinase-associated ...
  • Devarajan PJSJOC, investigation L. Neutrophil gelatinase‐associated lipocalin (NGAL): a new ...
  • Helanova K, Spinar J, Parenica J. Diagnostic and prognostic utility ...
  • Munilakshmi U, Shashidhar KN, Muninarayana C, Reddy M, Lakshmaiah V. ...
  • Gharishvandi F, Kazerouni F, Rahimipour A, Nasiri M. Evaluation of ...
  • Gharishvandi F, Kazerouni F, Rahimipour A, Nasiri M. Comparative assessment ...
  • Basturk T, Sari O, Koc Y, et al. Prognostic significance ...
  • Newman DJ, Thakkar H, Edwards RG, et al. Serum cystatin ...
  • Martin MV, Barroso S, Herráez O, Sande FD, Caravaca F. ...
  • Pezeshgi A, Abedi Azar S, Ghasemi H, Kamali K, Esmaeilzadeh ...
  • Bolignano D, Lacquaniti A, Coppolino G, Donato V, Campo S, ...
  • Ghonemy TA, Amro GM. Plasma neutrophil gelatinase-associated lipocalin (NGAL) and ...
  • Mitsnefes MM, Kathman TS, Mishra J, et al. Serum neutrophil ...
  • Fisher MA, Taylor GWJJOP. A prediction model for chronic kidney ...
  • نمایش کامل مراجع