A Game-Theoretic Approach for Robust Federated Learning
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 34، شماره: 4
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 439
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-34-4_009
تاریخ نمایه سازی: 6 اردیبهشت 1400
چکیده مقاله:
Federated Learning enables aggregating models trained over a large number of clients by sending these models to a central server, while data privacy is preserved since only the models are sent. Federated learning techniques are considerably vulnerable to poisoning attacks. In this paper, we explore the threat of poisoning attacks and introduce a game-based robust federated averaging algorithm to detect and discard bad updates provided by the clients. We model the aggregating process with a mixed-strategy game that is played between the server and each client. The valid actions of the clients are to send good or bad updates while the server can accept or ignore these updates as its valid actions. By employing the Nash Equilibrium property, the server determines the probability of providing good updates by each client. The experimental results show that our proposed game-based aggregation algorithm is significantly more robust to faulty and noisy clients in comparison with the most recently presented methods. According to these results, our algorithm converges after a maximum of ۳۰ iterations and can detect ۱۰۰% of the bad clients for all the investigated scenarios. In addition, the accuracy of the proposed algorithm is at least ۱۵.۸% and ۲.۳% better than state of the art for flipping and noisy scenarios, respectively.
کلیدواژه ها:
نویسندگان
E. Tahanian
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
M. Amouei
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
H. Fateh
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
M. Rezvani
Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :