A Life Clustering Framework for Prognostics of Gas Turbine Engines under Limited Data Situations

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 270

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-34-3_018

تاریخ نمایه سازی: 6 اردیبهشت 1400

چکیده مقاله:

The reliability of data driven prognostics algorithms severely depends on the volume of data. Therefore in case of limited data availability, life estimations usually are not acceptable; because the quantity of run to failure data is not sufficient to train prognostics model efficiently. To board this problem, a life clustering prognostics (LCP) framework is proposed. LCP regenerates the train data at different ages and outcomes to increment of the training data volume. So, the method is useful for limited data conditions. In this research, initially LCP performance is studied in normal situation is; successively robustness of the framework under limited data conditions is considered. For this purpose, a case study on turbofan engines is performed. The accuracy for the proposed LCP approach is ۷۱% and better than other approaches. The prognostics accuracy is compared in various situations of data deficiency for the case study. The prognostic measures remain almost unchanged when the training data is even one third. Successively, prognostics accuracy decreases with a slight slope; so that when the training data drops from ۱۰۰ to ۵%, the accuracy of the results drops ۲۶%. The results indicates the robustness of the proposed algorithm in limited data situation. The main contribution of this paper include: (۱) The effectiveness of life clustering idea for use in prognostics algorithms is proven; (۲) A step-by-step framework for LCP is provided; (۳) A robustness analysis is performed for the proposed prognostics algorithm.

کلیدواژه ها:

Prognosis and health management ، Remaining useful life estimation ، robustness ، Limited data

نویسندگان

A. Mahmoodian

Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran

M. Durali

Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran

M. Saadat

ECE Faculty, Tehran University, Tehran, Iran

T. Abbasian

ECE Faculty, Tehran University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Khezri R, Hosseini R, Mazinani M. “A fuzzy rule- based ...
  • Hu C, Zhou Z, Zhang J, Si X. “A survey ...
  • Hamidi H, Daraee A. “Analysis of pre-processing and post-processing methods ...
  • Amini M, Moharrami A, Poursaeidi E. “Failure probability and remaining ...
  • Peng Y, Dong M, Zuo MJ. “Current status of machine ...
  • Mao R, Zhu H, Zhang L, Chen A. “A new ...
  • Ranasinghe GD, Lindgren T, Girolami M, Parlikad AK. “A Methodology ...
  • Li YG, Nilkitsaranont P. “Gas turbine performance prognostic for condition-based ...
  • Xiongzi CH, Jinsong YU, Diyin TA, Yingxun WA. “A novel ...
  • Tongyang LI, Shaoping WA, Jian SH, Zhonghai MA. “An adaptive-order ...
  •  Diallo ON. “A data analytics approach to gas turbine prognostics ...
  • Caesarendra W, Widodo A, Yang BS. “Combination of probability approach ...
  • Huang HZ, Wang HK, Li YF, Zhang L, Liu Z. ...
  • Simon D. “A comparison of filtering approaches for aircraft engine ...
  • Lu F, Ju H, Huang J. “An improved extended Kalman ...
  • Ding C, Xu J, Xu L. “ISHM-based intelligent fusion prognostics ...
  • Goebel K, Saha B, Saxena A. “A comparison of three ...
  • Xu J, Wang Y, Xu L. “PHM-oriented integrated fusion prognostics ...
  • Moghaddass R, Zuo MJ. “An integrated framework for online diagnostic ...
  • Xiang Y, Liu Y. “Application of inverse first-order reliability method ...
  • Javed K. “A robust & reliable Data-driven prognostics approach based ...
  • Saxena A, Goebel K, Simon D, Eklund N. “Damage propagation ...
  • Ramasso E, Rombaut M, Zerhouni N. “Joint prediction of observations ...
  • Ramasso E. “Investigating computational geometry for failure prognostics.” International Journal ...
  • Khelif R, Malinowski S, Chebel-Morello B, Zerhouni N. “RUL prediction ...
  • Yakout M, Elkhatib A, Nassef MG. “Rolling element bearings absolute ...
  • Prasad SR, Sekhar AS. “Life estimation of shafts using vibration ...
  • Mohammadi E, Montazeri-Gh M. “Simulation of full and part-load performance ...
  • Dabaghi E, Kashanian H. “Feature dimension reduction of multisensor data ...
  • Mahmoodian A., Durali M., Abbasain T., Saadat M., “Optimized Age ...
  • An D, Kim NH, Choi JH. “Statistical aspects in neural ...
  • Wang T, Yu J, Siegel D, Lee J. “A similarity-based ...
  • Javed K, Gouriveau R, Zerhouni N., “Novel failure prognostics approach ...
  • نمایش کامل مراجع