Epileptic Electroencephalogram Classification using Relative Wavelet Sub-Band Energy and Wavelet Entropy
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 34، شماره: 1
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 374
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-34-1_009
تاریخ نمایه سازی: 6 اردیبهشت 1400
چکیده مقاله:
Epilepsy is one of the common neurological disorders which can cause unprovoked seizures. Currently, diagnosis and evaluation are carried out using electroencephalogram (EEG) signal analysis, which is performed visually by clinicians. Since EEG signals tend to be random and non-stationary, the visual inspection often provides misrepresentation of results. Numerous studies have been proposed computer-based analysis for epileptic EEG classification; however, there is still a gap to improve detection accuracy with a small number of features. Therefore, in this study, we proposed an automatic detection protocol for epileptic EEG classification. The proposed methods are relative wavelet energy and wavelet entropy for feature extraction and combined with the classifier method for automatic detection. In this study, three classes of EEG consisted of pre-ictal, ictal, and interictal were used as test data and also evaluate the proposed method. EEG signals were decomposed using wavelet transform into five conventional sub-bands, including gamma, beta, alpha, theta, and delta. The relative energy and entropy were then calculated in each of these bands as a feature set. These methods are chosen with consider of low-cost computing. We tested the performance of our feature extraction method using Support Vector Machine (SVM), both linear and non-linear kernels. From the simulation, the highest accuracy was ۸۰-۹۶.۷% for ictal vs. pre-ictal, ictal vs. inter-ictal, pre-ictal vs. inter-ictal, and ictal vs. non-ictal. Finally, this work was expected to help clinicians in the detection of epilepsy onset based on EEG signals.
کلیدواژه ها:
نویسندگان
S. Hadiyoso
School of Applied Science, Telkom University, Bandung, Indonesia
I. D. Irawati
School of Applied Science, Telkom University, Bandung, Indonesia
A. Rizal
School of Electrical Engineering, Telkom University, Bandung, Indonesia
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :