Image Edge Detection with Fuzzy Ant Colony Optimization Algorithm
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 33، شماره: 12
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 235
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-33-12_005
تاریخ نمایه سازی: 6 اردیبهشت 1400
چکیده مقاله:
Searching and optimizing by using collective intelligence are known as highly efficient methods that can be used to solve complex engineering problems. Ant colony optimization algorithm (ACO) is based on collective intelligence inspired by ants' behavior in finding the best path in search of food. In this paper, the ACO algorithm is used for image edge detection. A fuzzy-based system is proposed to increase the dynamics and speed of the proposed method. This system controls the amount of pheromone and distance. Thus, instead of considering constant values for the parameters of the algorithm, variable values are used to make the search space more accurate and reasonable. The fuzzy ant colony optimization algorithm is applied on several images to illustrate the performance of the proposed algorithm. The obtained results show better quality in extracting edge pixels by the proposed method compared to several image edge detection methods. The improvement of the proposed method is shown quantitatively by the investigation of the time and entropy of conventional methods and previous works. Also, the robustness of the proposed method is demonstrated against additive noise.
کلیدواژه ها:
نویسندگان
Z. Dorrani
Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
H. Farsi
Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
S. Mohamadzadeh
Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :