Solving a new multi-objective resource constrained project scheduling problem by SAICA and compare it with DE method

سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 247

فایل این مقاله در 37 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_RIEJ-7-2_002

تاریخ نمایه سازی: 30 فروردین 1400

چکیده مقاله:

Nowadays the Resource Constrained Project Scheduling Problem (RCPSP) has triggered a substantially significant issue among scheduling problems. The purpose of RCPSP is minimizing the duration of the projects due to both limited available resources and precedence constraints. Indeed, it attempts to consume the total resources by finding the best duration for each activity. This paper proposes a new multi-objective mathematical model for multi-mode RCPSP with interruption to minimize the completion time of the project, maximize the Net Present Value (NPV) of the project, and minimize the allocating workforce’s costs to perform required skills of all activities. To solve the proposed model, an efficient method based on Me measure is used to cope with the uncertainties, and TH method is utilized to convert the multi-objective method into the single one. Furthermore, this paper presents a novel hybrid meta-heuristic algorithm based on Imperialist Competitive Algorithms (ICA) named Self-Adaptive Imperialist Competitive Algorithm (SAICA) to solve the mathematical model which has never been used to solve this type of problems before. Also, to evaluate the proposed method, its performance is investigated against some meta-heuristic algorithms: Differential Evolution (DE) and Imperialist Competitive Algorithm (ICA). Then, a numerical example, two case studies and a real case study have been carried out to embody both validity and efficiency of the presented approach. The obtained results embody that the proposed SAICA is more effective and practical in comparison with DE, ICA, and BCO in decreasing the project duration and also, the considerable effect on solutions confirms the quality of the proposed method. 

کلیدواژه ها:

Project scheduling ، Resource-Constrained Project Scheduling Problem (RCPSP) ، Meta- heuristic algorithm ، Self-Adaptive Imperialist Competitive Algorithm (SAICA)

نویسندگان

A. Esmaili Dooki

Department of Industrial Engineering, Islamic Azad University, Firoozkooh Branch, Firoozkooh, Iran.

p. Bolhasani

Department of Industrial Engineering, Islamic Azad University, Tehran Markaz Branch,Tehran, Iran.

A. Alam Tabriz

Department of Management, Shahid Beheshti University, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • [1]      Brucker, P., Drexl, A., Möhring, R., Neumann, K., & ...
  • [2]      Kolisch, R., & Hartmann, S. (2006). Experimental investigation of ...
  • [3]      Hartmann, S., & Kolisch, R. (2000). Experimental evaluation of ...
  • [4]      Petrović, R. (1968). Optimization of resource allocation in project ...
  • [5]      Demeulemeester, E. L., & Herroelen, W. S. (1997). New ...
  • [6]      Brucker, P., Knust, S., Schoo, A., & Thiele, O. ...
  • [7]      Mingozzi, A., Maniezzo, V., Ricciardelli, S., & Bianco, L. ...
  • [8]      Klein, R., & Scholl, A. (1999). Progress: Optimally solving ...
  • [9]      Blazewicz, J., Lenstra, J. K., & Kan, A. R. ...
  • [10]  Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for ...
  • [11]  Ballestín, F., Barrios, A., & Valls, V. (2011). An ...
  • [12]  Kima, K. W., Gen, M., Yamazaki, G. (2003). Hybrid ...
  • [13]  Cervantes, M., Lova, A., Tormos, P., Barber, F. (2008). ...
  • [14]  Goncalves, J. F., Mendes, J. J. M., Resende, M. ...
  • [15]  Mendes, J. J. D. M., Gonçalves, J. F., & ...
  • [16]  Valls, V., Ballestin, F., & Quintanilla, S. (2008). A ...
  • [17]  Zamani, R. (2013). A competitive magnet-based genetic algorithm for ...
  • [18]  Bouleimen, K. L. E. I. N., & Lecocq, H. ...
  • [19]  Boctor, F.F., (1996). Resource-constrained project scheduling by simulated annealing. ...
  • International journal of production research, 34(8), 2335–2351. ...
  • [20]  Valls, V., Quintanilla, S., & Ballestı́n, F. (2003). Resource-constrained ...
  • [21]  Glover, F. (1989). Tabu search—part I. ORSA journal on computing, 1(3), ...
  • [22]  Thomas, P. R., & Salhi, S. (1998). A tabu ...
  • [23]  Merkle, D., Middendorf, M., & Schmeck, H. (2002). Ant ...
  • [24]  Luo, S., Wang, C., & Wang, J. (2003, November). ...
  • [25]  Zhang, H., Li, X., Li, H., & Huang, F. ...
  • [26]  Zhang, H., Li, H., & Tam, C. M. (2006). ...
  • [27]  Luo, X., Wang, D., Tang, J., & Tu, Y. ...
  • [28]  Amiri, M., & Barbin, J. P. (2015). New approach ...
  • [29]  Storn, R., & Price, K. (1997). Differential evolution–a simple ...
  • [30]  Damak, N., Jarboui, B., Siarry, P., & Loukil, T. ...
  • [31]  Rahimi, A., Karimi, H., & Afshar-Nadjafi, B. (2013). Using ...
  • [32]  Jarboui, B., Damak, N., Siarry, P., & Rebai, A. ...
  • [33]  Akeshteh, Z., & Mardukhi, F. (2017). An imperialist competitive ...
  • [34]  Panahi, I., & Nahavandi, N. (2017). An efficient imperialist ...
  • [35]  Namazi, S., Fard, M. R. Z., Mousavi, S. M. ...
  • [36]  Wang, X., & Huang, W. (2010). Fuzzy resource-constrained project ...
  • [37]  Maghsoudlou, H., Afshar-Nadjafi, B., & Niaki, S. T. A. ...
  • [38]  Mendes, J. J. D. M., Gonçalves, J. F., & ...
  • [39]  Ulusoy, G., & Cebelli, S. (2000). An equitable approach ...
  • [40]  Torabi, S. A., & Hassini, E. (2008). An interactive ...
  • [41]  Rabbani, M., Zhalechian, M., & Farshbaf‐Geranmayeh, A. (2016). A ...
  • [42]  Xu, J., & Zhou, X. (2013). Approximation based fuzzy ...
  • [43]  Dubois, D., & Prade, H. (2012). Possibility theory. Computational complexity (pp. ...
  • [44]  Zahiri, B., Tavakkoli-Moghaddam, R., Mohammadi, M., & Jula, P. ...
  • [45]  Mohammadi, M., Torabi, S. A., & Tavakkoli-Moghaddam, R. (2014). ...
  • [46]  Storn, R., & Price, K. (1996, May). Minimizing the ...
  • [47]  Eshraghi, A. (2016). A new approach for solving resource ...
  • [48]  Lucic, P., & Teodorovic, D. (2001). Bee system: modeling ...
  • [49]  Lucić, P., Teodorovic, D. (2002). Transportation modeling: an artificial ...
  • [50]  Lučić, P., & Teodorović, D. (2003). Computing with bees: ...
  • [51]  Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive algorithm: ...
  • [52]  Ardalan, Z., Karimi, S., Poursabzi, O., & Naderi, B. ...
  • [53]  Afruzi, E. N., Najafi, A. A., Roghanian, E., & ...
  • [54]  Sivanandam, S. N., & Deepa, S. N. (2008). Genetic ...
  • [55]  Mohammadi, M., Tavakkoli-Moghaddam, R., Siadat, A., & Dantan, J. ...
  • [56]  Wu, L., Wang, Y., & Zhou, S. (2010). Improved ...
  • [57]  Jun, D. H., & El-Rayes, K. (2009). Multi-objective optimization ...
  • [58]  Chen, P. H., & Weng, H. (2009). A two-phase ...
  • [59]  Yang, K. K., Tay, L. C., & Sum, C. ...
  • نمایش کامل مراجع