The survey of data envelopment analysis models in fuzzy stochastic environments

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 275

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_RIEJ-8-4_005

تاریخ نمایه سازی: 30 فروردین 1400

چکیده مقاله:

One of the best techniques for evaluating the performance of organizations is data envelopment analysis. Data Envelopment Analysis (DEA) is a non-parametric method for evaluating the performance of decision-making units (DMUs) that recognizes the relative performance of DMUs based on mathematical programming. The classic DEA model was initially formulated for optimal inputs and outputs, But in real-world problems, the values observed from input and output data are often ambiguous and random. In fact, decision-makers may be faced with a specific hybrid environment where there are fuzziness and randomness in the problem. To overcome this problem, data envelopment analysis models in the random fuzzy environment have been proposed. Although the DEA has many advantages, one of the disadvantages of this method is that the classic DEA does not actually give us a definitive conclusion and does not allow random changes in input and output. In this research data envelopment analysis models in fuzzy random environments is reviewed.

کلیدواژه ها:

Data Envelopment Analysis ، Decision Making Unit ، performance ، Random Fuzzy Data Envelopment Analysis

نویسندگان

F. Z. Montazeri

Department of Industrial Engineering, Ayandegan Institute of Higher Education, Tonekabon, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • [1]      Hatami-Marbini, A., Emrouznejad, A., & Tavana, M. (2011). A ...
  • [2]      Sengupta, J. K. (1992). A fuzzy systems approach in ...
  • [3]      Triantis, K., & Girod, O. (1998). A mathematical programming ...
  • [4]      Guo, P., & Tanaka, H. (2001). Fuzzy DEA: a ...
  • [5]      Hatami-Marbini, A., Tavana, M., & Ebrahimi, A. (2011). A ...
  • [6]      Lertworasirikul, S., Fang, S. C., Joines, J. A., & ...
  • [7]      Wang, Y. M., Luo, Y., & Liang, L. (2009). ...
  • [8]      Kao, C., & Liu, S. T. (2000). Fuzzy efficiency ...
  • [9]      Chen, C. B., & Klein, C. M. (1997). A ...
  • [10]  Saati, S. M., Memariani, A., & Jahanshahloo, G. R. ...
  • [11]  Parameshwaran, R., Srinivasan, P. S. S., Punniyamoorthy, M., Charunyanath, ...
  • [12]  Puri, J., & Yadav, S. P. (2014). A fuzzy ...
  • [13]  Shiraz, R. K., Tavana, M., & Paryab, K. (2014). ...
  • [14]  Momeni, E., Tavana, M., Mirzagoltabar, H., & Mirhedayatian, S. ...
  • [15]  Payan, A. (2015). Common set of weights approach in ...
  • [16]  Aghayi, N., Tavana, M., & Raayatpanah, M. A. (2016). ...
  • [17]  Land, K. C., Lovell, C. K., & Thore, S. ...
  • [18]  Olesen, O. B., & Petersen, N. C. (1995). Chance ...
  • [19]  Huang, Z., & Li, S. X. (1996). Dominance stochastic ...
  • [20]  Cooper, W. W., Huang, Z., Lelas, V., Li, S. ...
  • [21]  Li, S. X. (1998). Stochastic models and variable returns ...
  • [22]  Bruni, M. E., Conforti, D., Beraldi, P., & Tundis, ...
  • [23]  Cooper, W. W., Deng, H., Huang, Z., & Li, ...
  • [24]  Tsionas, E. G., & Papadakis, E. N. (2010). A ...
  • [25]  Udhayakumar, A., Charles, V., & Kumar, M. (2011). Stochastic ...
  • [26]  Tsolas, I. E., & Charles, V. (2015). Incorporating risk ...
  • [27]  Farnoosh, R., Khanjani, R., & Chaji, A. (2011). Stochastic ...
  • [28]  Wu, C., Li, Y., Liu, Q., & Wang, K. ...
  • [29]  Wanke, P., Barros, C. P., & Emrouznejad, A. (2018). ...
  • [30]  Olesen, O. B., & Petersen, N. C. (2016). Stochastic ...
  • [31]  Kwakernaak, H. (1978). Fuzzy random variables—I. Definitions and theorems. ...
  • [32]  Feng, X., & Liu, Y. K. (2006). Measurability criteria ...
  • [33]  Liu, Y. K., & Liu, B. (2003). Fuzzy random ...
  • [34]  Liu, B. (2009). Some research problems in uncertainty theory. ...
  • [35]  Qin, R., & Liu, Y. K. (2010). Modeling data ...
  • [36]  Tavana, M., Shiraz, R. K., Hatami-Marbini, A., Agrell, P. ...
  • [37]  Tavana, M., Shiraz, R. K., Hatami-Marbini, A., Agrell, P. ...
  • [38]  Tavana, M., Khanjani Shiraz, R., & Hatami-Marbini, A. (2014). ...
  • [39]  Paryab, K., Shiraz, R. K., Jalalzadeh, L., & Fukuyama, ...
  • [40]  Shiraz, R. K., Tavana, M., & Di Caprio, D. ...
  • [41]  Nasseri, S. H., Ebrahimnejad, A., & Gholami, O. (2018). ...
  • [42]  Charnes, A., Cooper, W. W., & Rhodes, E. (1978). ...
  • [43]  Tavana, M., Khanjani Shiraz, R., & Hatami-Marbini, A. (2014). ...
  • [44]  Tavana, M., Shiraz, R. K., Hatami-Marbini, A., Agrell, P. ...
  • نمایش کامل مراجع