An Implementation of the AI-based Traffic Flow Prediction in The Resilience Control Scheme

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 307

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJTE-8-2_005

تاریخ نمایه سازی: 29 فروردین 1400

چکیده مقاله:

Today, often a reliable and dynamic sensor system is found to be necessary to control intelligent transportation systems. While these dynamical sensor systems are often found to be useful for the ordinary situations, the resilience-control-related issues are not yet fully addressed in the literature. The traffic flow is an important resource, which if found to be disturbed by a malicious threat it may cause further insecurities, e.g. if the sensor data is not accessible due to a malicious sabotage of the on-the-road sensors. Furthermore, often centers for the data gathering and prediction are suffering from data-loss because of imperfections of the data gathering itself. To overcome the resulting difficulties, a prediction engine is required to estimate the traffic flow, with the ability to compensate for the lost sensors. In this paper, a traffic flow prediction engine is proposed in which the artificial-intelligence-based methods are used to perform the optimization task. This method is implemented for the test in the real-world situation and its efficiency in traffic estimation is proved to be reliable. The Adaptive Neuro-Fuzzy Inference System (ANFIS) is trained with the particle swarm optimization (PSO) algorithm and the Artificial Neural Network model (ANN) is used to predict the flow. In addition, The Principal Components Analysis (PCA) method is adopted to reduce the dimension of the features. The results show the method's efficiency in predicting the traffic flow. This prediction engine can be practically implemented and used as a replacement for the sensors to predict the traffic flow.

نویسندگان

Majid Mohammadi

PhD candidate, Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran

Abbas Dideban

Associated Professor, Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran

Asad Lesani

Postdoctoral fellows, Civil Engineering Department, McGill University, Montreal, Canada

Behzad Moshiri

Professor, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • -                  Abdi, J. and Moshiri, B. (2015) "Application of temporal ...
  • -                Abdulhai, B., Porwal, H. and Recker, W. (2002) "Short-term ...
  • -                Barimani, N., Moshiri, B. and Teshnehlab, M. (2012) "State ...
  • -                Biron, Z. A. (2017) "A resilient control approach to secure ...
  • -                Chen, C. Hu, J., Meng, Qiang, and Zhang, Yi ...
  • -         Daffertshofer, A., Lamoth, C. J., Meijer, O. G., ...
  • -                Divsalar, M., Khatami Firouzabadi, A., Sadeghi, M., Behrooz, A. ...
  • -                Esbati, M., Ahmadieh Khanesar, M. and Shahzadi, A. (2018) ...
  • -                Ferrara, A., Sacone, S., and Siri, S. (2018). "Emerging ...
  • -                Ganin, A. A., Mersky, A. C., Jin, A. S., ...
  • -                Gong, X. Y. and Tang, S. M. (2003) "Integrated ...
  • -                Gupta, N., Ahuja, N., Malhotra, S., Bala, A. and ...
  • -        Hadiuzzaman, M., Karim, A., Rahman, M., and Hasan, ...
  • -                Hooshdar, S. and Adeli, H. (2004) "Toward intelligent variable ...
  • -                Hosseini, S. H., Moshiri, B., Rahimi-Kian, A. and Nadjar ...
  • -                Lam, W. H., Tang, Y. F., and Tam, M. ...
  • -                Li, C., Anavatti, S. G., and Ray, T (2011) ...
  • -                Li, S., Wang, L. and Liu, B. (2013) "Prediction ...
  • -                López, A. A., de Quevedo, Á. D., Yuste, F. ...
  • -                Ma, Z., Luo, G. and Huang, D. (2016) "Short ...
  • -                Mamdoohi, A. R., Saffarzadeh, M. & Shojaat, S. (2015). ...
  • -                Poor Arab Moghadam, M., Pahlavani, P. and Naseralavi, S. ...
  • -                Ramezani, M. and Geroliminis, N. (2012) "On the estimation ...
  • -                Rojer Jang, J.S. (1993) "ANFIS: adaptive-network-based fuzzy inference system", ...
  • -  Shang, Q., Lin, C., Yang, Z., Bing, Qichun, and ...
  • -  Sun, S., Yu, G., and Zhang, C. (2004) "Short-term ...
  • -  Torfehnejad, H., Jalali, A. (2018). "Traffic condition detection in ...
  • -  Trelea, I. C (2003). "The particle swarm optimization algorithm: ...
  • -         Williams, B. M., and Hoel, L. A.  (1999) ...
  • -        Xia. (2020). Assessment of Freeway Link Performance Reduction due ...
  • -         Yu, F. and Song, Z. (2015) "The short-term ...
  • -         Zhao, L. and Wang, F. Y (2007) "Short-term ...
  • نمایش کامل مراجع