An efficient algorithm to improve the accuracy and reduce the computations of LS-SVM

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 344

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-10-1_003

تاریخ نمایه سازی: 17 فروردین 1400

چکیده مقاله:

We present a novel algorithm, which is called Cutting Algorithm (CA), for improving the accuracy and reducing the computations of the Least Squares Support Vector Machines (LS-SVMs). The method is based on dividing the original problem to some subproblems. Since a master problem is converted to some small problems, so this algorithm has fewer computations. Although, in some cases that the typical LS-SVM cannot classify the dataset linearly, applying the CA the datasets can be classified. In fact, the CA improves the accuracy and reduces the computations. The reported and comparative results on some known datasets and synthetics data demonstrate the efficiency and the performance of CA.

کلیدواژه ها:

Least squares support vector machine ، Cutting algorithm ، Classification

نویسندگان

Mojtaba Baymani

Department of Computer and Mathematics, Quchan University of Advanced Technology, Quchan, Iran.

Amin Mansoori

Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Baymani, M., Salehi-M N. and Mansoori, A. Applying norm concepts ...
  • Blake C.L. and Merz, C.J. UCI repository for machine learning ...
  • Calisir, D. and Dogantekin, E. A new intelligent hepatitis diagnosis ...
  • Gao, Y., Shan, X.,Hu, Z., Wang, D., Li, Y. and ...
  • Hao, P.-Y. New support vector algorithms with parametric insensitive/margin model, ...
  • Kumar M.A. and Gopal, M. Least squares twin support vector ...
  • Lin, C.J. A formal analysis of stopping criteria of decomposition ...
  • Long, B., Xian, W., Li, M.and Wang, H. Improved diagnostics ...
  • Mangasarian O.L. and Wild, E.W. Multisurface proximal support vector classification ...
  • Mehrkanoon, S. and Suykens, J.A. Learning solutions to partial differen ...
  • Newman, C.B.D. and Merz, C., 1998. UCI repository of machine ...
  • Schölkopf, B., Smola, A., Williamson, R.C. and Bartlett, P.L. New ...
  • Suykens, J.A.K. and Vandewalle, J. Least squares support vector machine ...
  • Vapnik, V.N. The nature of statistical learning theory, Springer, New ...
  • Vapnik, V.N. Statistical learning theory, John Wiley and Sons, New ...
  • Yang, L.,Yang, S., Li, S., Zhang, R., Liu, F. and ...
  • نمایش کامل مراجع