Mean-square Stability and Convergence of Compensated Split-Step $theta$-method for Nonlinear Jump Diffusion Systems
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 405
فایل این مقاله در 24 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMF-1-1_008
تاریخ نمایه سازی: 17 فروردین 1400
چکیده مقاله:
In this paper, we analyze the strong convergence and stability of the Compensated Splite-step $theta$ (CSS$theta$) and Forward-Backward Euler-Maruyama (FBEM) methods for Numerical solutions of Stochastic Differential Equations with jumps (SDEwJs),where $sqrt{2}-1leqthetaleq 1$. The drift term $f$ has a one-sided Lipschitz condition, the diffusion term $g$ and jump term $h$ satisfy global Lipschitz condition. Furthermore, we discuss about the stability of SDEwJs with constant coefficients and present new useful relations between their coefficients. Finally we examine the correctness and efficiency of theorems with some examples.In this paper, we analyze the strong convergence and stability of the Compensated Splite-step $theta$ (CSS$theta$) and Forward-Backward Euler-Maruyama (FBEM) methods for Numerical solutions of Stochastic Differential Equations with jumps (SDEwJs),where $sqrt{2}-1leqthetaleq 1$. The drift term $f$ has a one-sided Lipschitz condition, the diffusion term $g$ and jump term $h$ satisfy global Lipschitz condition. Furthermore, we discuss about the stability of SDEwJs with constant coefficients and present new useful relations between their coefficients. Finally we examine the correctness and efficiency of theorems with some examples.
کلیدواژه ها:
nonlinear stochastic differential equations ، Poisson jump ، compensated split-step $theta$ method ، one-sided Lipschitz condition ، forward-backward Euler-Maruyama method ، mean-square stability
نویسندگان
Ali Soheili
Department of applied mathematics Ferdowsi university of Mashhad Mashhad, Iran
Yasser Taherinasab
Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
Mohammad Amini
Department of Statistics, Ferdowsi University of Mashhad, Mashhad,