Composition operators between growth spaces on circular and strictly convex domains in complex Banach spaces
محل انتشار: مجله علوم ریاضی کاسپین، دوره: 9، شماره: 2
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 262
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CJMS-9-2_003
تاریخ نمایه سازی: 27 بهمن 1399
چکیده مقاله:
Let $\Omega_X$ be a bounded, circular and strictly convex domain in a complex Banach space $X$, and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$. The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$ such that $|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$ for some constant $C>0$, whenever $r_{\Omega_X}$ is the Minkowski functional on $\Omega_X$ and $\nu :[0,1)\rightarrow(0,\infty)$ is a nondecreasing, continuous and unbounded function. For complex Banach spaces $X$ and $Y$ and a holomorphic map $\varphi:\Omega_X\rightarrow\Omega_Y$, put $C_\varphi( f)=f\circ \varphi,f\in\mathcal{H}(\Omega_Y)$. We characterize those $\varphi$ for which the composition operator $ C_\varphi:\mathcal{A}^{\omega}(\Omega_Y)\rightarrow\mathcal{A}^{\nu}(\Omega_X)$ is a bounded or compact operator.
کلیدواژه ها: