GOLDEN EQUATIONS FOR DYNAMIC CHARACTERISTICS OF BEAM-SPRING SYSTEMS
سال انتشار: 1390
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,483
فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
SEE06_025
تاریخ نمایه سازی: 16 اردیبهشت 1390
چکیده مقاله:
In damage detection of civil, mechanical, aerospace, nuclear, bio-mechanic, and offshore engineering dynamic characteristics of beam-spring structures (BSS) play an important rule. The BSS is a model for beam segments plus springs, cracked beams and human or robot arms.Recently a new and innovative method for the free axial vibration of cracked bars is proposed. The method is extended for the free vibration of BSS. The model is considered as a sum of beam segments and springs. The governing equation (GE) for the free vibration of beam segments are combined with the compatibility conditions at spring positions. By introducing a new and innovative conjugate beam through defining a new variable, as function of lateral displacement, a single ordinary differential equation, golden equation, is obtained. The solution for the golden governing equation (GGE) is the same as that for an intact beam and so great simplicity and generality is obtained. Using the GGE both closed form and numerical solutions are obtained. The solutions are very much accurate and simpler than the conventional methods in the literature. Through applying the work to specific example and comparison of the results with others the accuracy, efficiency and robustness of the work is verified.
کلیدواژه ها:
نویسندگان
a Ranjbaran
Department of Civil Engineering, Shiraz University, Shiraz, Iran
m Ranjbaran
Department of Chemical Engineering, Shiraz University, Shiraz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :