ارائه مدلی برای انتخاب سبد بهینه سهام با استفاده از الگوریتم هوش جمعی سالپ و شبکه‌های عصبی پرسپترون چندلایه

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 583

فایل این مقاله در 25 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_FEJ-11-44_021

تاریخ نمایه سازی: 7 بهمن 1399

چکیده مقاله:

ﻣﻬﻤﺘﺮﯾﻦ دﻏﺪﻏﻪ ﺳﺮﻣﺎﯾﻪﮔﺬاران، اﻓﺰاﯾﺶ ﻣﯿﺰان ﺳﻮد و ﮐﺎﻫﺶ رﯾﺴﮏ درﺑﻮرس ﺑﻮده و ﻫﻤﻮاره ﺑﻪ دﻧﺒﺎل راهکاری جهت ﺑﻬﺘﺮﯾﻦ ﭘﯿﺸﻨﻬﺎد در ﺧﺮﯾﺪ ﺳﻬﺎم هستند، تا ﺑﯿﺸﺘﺮﯾﻦ سود ﺳﺮﻣﺎﯾﻪﮔﺬاری را ﺑﺎﺷﺪ. در تحقیقات اﻧﺠﺎم ﺷﺪه مشاهده می شود که ﻣﺪل رﯾﺎﺿﯽ ﻣﯿﺎﻧﮕﯿﻦ وارﯾﺎﻧﺲ ﻣﺎرﮐﻮﯾﺘﺰ ﯾﮑﯽ از اﺻﻠﯽﺗﺮﯾﻦ راهکارها است اما ﺑﻬﺘﺮ اﺳﺖ ﻣﻌﯿﺎرﻫﺎیی همچون ﭼﻮﻟﮕﯽ با در نظر گرفتن ﭘﺘﺎﻧﺴﯿﻞ آینده ﺳﻬﺎم مورد بررسی قرار گیرد. در اﯾﻦ ﺗﺤﻘﯿﻖ از 20 ﺷﺮﮐﺖ اول از 50 ﺷﺮﮐﺖ ﺑﺮﺗﺮ ﺳﻪ ﻣﺎﻫﻪ اول سال 2019 اﻋﻼم ﺷﺪه ﺗﻮﺳﻂ ﺷﺮﮐﺖ ﺑﻮرس ﺑﻪ ﻋﻨﻮان ﻧﻤﻮﻧﻪ اﺳﺘﻔﺎده ﺷﺪه اﺳﺖ. همچنین اﯾﻦ ﭘﮋوﻫﺶ ﺑﻪ دﻧﺒﺎل اراﺋﻪ مدلی است که در آن پتانسیل آینده سهام ، توسط شبکه عصبی پرسپترون چندلایه با چندسناریو مختلف از جمله پیش بینی از روش خود سری زمانی قیمت سهام و یا پیش بینی با تاثیر عوامل موثر در تغییرات قیمت سهام، پیش بینی می شود. ﺳﭙﺲ، اﯾﻦ ﻣﺪلﻫﺎی بهینه سازی ﺑﺎ اﺳﺘﻔﺎده از اﻟﮕﻮرﯾﺘﻢ هوش جمعی سالپ که از الگوریتم های نوظهور و با قدرت همگرایی بالا است، ﺣﻞ ﻣﯽﮔﺮدد. ﻧﺘﺎﯾﺞ ﺗﺤﻘﯿﻖ ﺑﯿﺎﻧﮕﺮ آن اﺳﺖ ﮐﻪ ﻣﺪلﻫﺎی اراﺋﻪ ﺷﺪه در اﯾﻦ ﻣﻘﺎﻟﻪ، در ﻣﻘﺎﯾﺴﻪ ﺑﺎ روشﻫﺎی ﺳﻨﺘﯽ و ﺷﺎﺧﺺ ﺑﺎزار، ﺑﺎزدﻫﯽ ﺑﺎﻻﺗﺮی را برای سرمایه گذاران فراهم می نماید.

کلیدواژه ها:

سبد بهینه سهام ، شبکه های عصبی پرسپترون چندلایه ، الگوریتم هوش جمعی سالپ

نویسندگان

سید علی حسینی

گروه حسابداری، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

زهرا پورزمانی

گروه حسابداری، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

آزیتا جهانشاد

گروه حسابداری، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران