Mining Twitter Data to Understand the Human Sentiment on Hurricane Florence

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 242

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JDER-3-2_007

تاریخ نمایه سازی: 20 دی 1399

چکیده مقاله:

Introduction: Most studies have analyzed how natural disasters exert a severe impact on the regional level in the disaster period based on quantitative methods. This study aimed to highlight how Hurricane Florence exerts an impact on human life and societies across US states in a multitude of periods by employing both qualitative and quantitative methods. Method: This study developed a new app called “Twitgis,” collected 1,433,032 tweets, and employed 57,842 data filtered for Hurricane Florence between 08-21-2018 and 10-01-2018. Results: First, this study showed that the spatial patterns of tweets are differentiated by periods. For example, the spatial patterns of tweets are more concentrated in the south region in the pre-hurricane period, the spatial patterns of tweets are heavily concentrated in the Southeast region in the hurricane period, and the spatial patterns of tweets are more located in the Northeast region in the post-hurricane period. Second, the most retweeted tweet shows that human sentiment plays an important role in disaster information more than news of the hurricane in online communication. The first ranked tweet is about two times higher than the sum of the retweet numbers between the top two and top 20. Third, this study found that people actively utilize Twitter to share a lot of emotions, opinions, information, and so on for Hurricane Florence. For instance, about one-fifth of tweets in the sentiment analysis are emotions for the hurricane event. Conclusion: Governments and policymakers should monitor Twitter data to understand the effects of natural disasters on people and the human environment.

نویسندگان

Seungil Yum

Design, Construction, and Planning, University of Florida

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Wang T. Global number of natural disasters events 2000-2019. Available ...
  • Karlsruhe Institute of Technology. Natural disasters since 1900-over 8 million ...
  • Demuth JL, Morss RE, Palen L, et al. Sometimes da# ...
  • Malmstadt J, Scheitlin K, Elsner J. Florida hurricanes and damage ...
  • Martín Y, Cutter SL, Li Z. Bridging twitter and survey ...
  • Pielke Jr RA, Gratz J, Landsea CW, Collins D, Saunders ...
  • National hurricane center. Costliest U.S. Tropical Cyclones. National Hurricane Center: ...
  • Thompson MA. Hurricane Katrina and economic loss: an alternative measure ...
  • Degg M. Natural disasters: recent trends and future prospects. Geography. ...
  • Jonkman SN. Global perspectives on loss of human life caused ...
  • Levine M, Thompson K. Identity, place, and bystander intervention: Social ...
  • Neumayer E, Plümper T. The gendered nature of natural disasters: ...
  • Rodriguez-Oreggia E, De La Fuente A, De La Torre R, ...
  • Wang B, Zhuang J. Crisis information distribution on Twitter: a ...
  • Zou L, Lam NS, Cai H, Qiang Y. Mining Twitter ...
  • Von Peter G, Von Dahlen S, Saxena SC. Unmitigated disasters? ...
  • Felbermayr G, Gröschl J. Naturally negative: The growth effects of ...
  • Acar A, Muraki Y. Twitter for crisis communication: lessons learned ...
  • Earle PS, Bowden DC, Guy M. Twitter earthquake detection: earthquake ...
  • Muralidharan S, Rasmussen L, Patterson D, Shin JH. Hope for ...
  • Velev D, Zlateva P. An innovative approach for designing an ...
  • Kim J, Hastak M. Social network analysis: Characteristics of online ...
  • Cheong F, Cheong C. Social Media Data Mining: A Social ...
  • Ahmouda A, Hochmair HH, Cvetojevic S. Using Twitter to Analyze ...
  • Kumar D, Ukkusuri SV. Utilizing geo-tagged tweets to understand evacuation ...
  • Wang Q, Taylor JE. Quantifying human mobility perturbation and resilience ...
  • Nagar S, Seth A, Joshi A. Characterization of social media ...
  • Bruns A, Stieglitz S. Quantitative approaches to comparing communication patterns ...
  • D'Auria L, Convertito V. Real-time mapping of earthquake perception areas ...
  • Wang Q, Taylor JE. Patterns and limitations of urban human ...
  • Karamshuk D, Shaw F, Brownlie J, Sastry N. Bridging big ...
  • CIRA/RAMMB; GOES-16/NOAA ...
  • https://developer.twitter.com ...
  • https://twitter.com/Michgonewild/status/1038841840605298689 ...
  • https://twitter.com/WaffleHouseNews/status/1039606662234075137/photo/1 ...
  • نمایش کامل مراجع