Mining Twitter Data to Understand the Human Sentiment on Hurricane Florence
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 242
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JDER-3-2_007
تاریخ نمایه سازی: 20 دی 1399
چکیده مقاله:
Introduction: Most studies have analyzed how natural disasters exert a severe impact on the regional level in the disaster period based on quantitative methods. This study aimed to highlight how Hurricane Florence exerts an impact on human life and societies across US states in a multitude of periods by employing both qualitative and quantitative methods. Method: This study developed a new app called “Twitgis,” collected 1,433,032 tweets, and employed 57,842 data filtered for Hurricane Florence between 08-21-2018 and 10-01-2018. Results: First, this study showed that the spatial patterns of tweets are differentiated by periods. For example, the spatial patterns of tweets are more concentrated in the south region in the pre-hurricane period, the spatial patterns of tweets are heavily concentrated in the Southeast region in the hurricane period, and the spatial patterns of tweets are more located in the Northeast region in the post-hurricane period. Second, the most retweeted tweet shows that human sentiment plays an important role in disaster information more than news of the hurricane in online communication. The first ranked tweet is about two times higher than the sum of the retweet numbers between the top two and top 20. Third, this study found that people actively utilize Twitter to share a lot of emotions, opinions, information, and so on for Hurricane Florence. For instance, about one-fifth of tweets in the sentiment analysis are emotions for the hurricane event. Conclusion: Governments and policymakers should monitor Twitter data to understand the effects of natural disasters on people and the human environment.
کلیدواژه ها:
نویسندگان
Seungil Yum
Design, Construction, and Planning, University of Florida
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :