Artificial neural networks as a corrector of hydrodynamic modelling results

سال انتشار: 1382
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,456

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICCE06_423_7695418618

تاریخ نمایه سازی: 25 مهر 1384

چکیده مقاله:

In this paper, the application of artificial neural networks (ANN) to optimise the results obtained from a hydrodynamic model of river flow was evaluated. The study area is Reynolds Creek Experimental Watershed in southwest Idaho, USA. A hydrodynamic model was constructed to predict flow at theoutlet using time series data from upstream gauging sites as boundary conditions. In the second stage, the model was replaced with an ANN model but with the same inputs. Finally the error of the hydrodynamic model was predicted using an ANN model to optimise the outputs. Simulations were carried out for two different conditions (with and without data from a recently suspended gauging site) to evaluate the effect of this suspension in hydrodynamic, ANN and the combined model. Using ANN in this way, the error produced by the hydrodynamic model is predicted and thereby, the results of the model are improved. In addition, the results of hydrodynamic modelling affected by the suspension of the flow gauging is appropriately improved by neural networks. Combination of these two techniques for this specific application uses the potential of both methods and shows a good performance

کلیدواژه ها:

Combination of hydrodynamic and ANN ، model results optimisation ، error prediction ، flow prediction by ANN ، Neural networks for flood prediction

نویسندگان

Nigel G. Wright

School of Civil engineering, University of Nottingham, Nottingham NG۷ ۲RD, UK

Mohammad T Dastorani

School of Civil engineering, University of Nottingham, Nottingham NG۷ ۲RD, UK

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Hanson, C. L., Marks, D. and van Vactor, S. S., ...
  • Hanson C. L., *Precipitation monitoring at the Reynolds Creek Experimental ...
  • Marks, D., Cooley, K. R., Robertson, D. C. and Winstral, ...
  • NeuroDimens ions, NeuroSo lutions, _ _ 2001. ...
  • Pierson, F. B., Slaughter, C. W. and Cram, Z. K., ...
  • Seyfried, M. S., Harris, R C., Marks, D. and Jacob, ...
  • Slaughter C. W., Marks, D., Flerchinger, G. N., van Vactor, ...
  • USDA-ARS Northwest Watershed Research Center anonynmous ftp site: ftp.nwrc.ars. usda.gov. ...
  • Wright, N.G., Dastorani, M. T., Goodwin, P. and Slaughter, C. ...
  • نمایش کامل مراجع