Digital mammography and accelerated diagnosis of breast cancer

سال انتشار: 1399
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 414

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CARSE05_120

تاریخ نمایه سازی: 17 آذر 1399

چکیده مقاله:

This paper discusses an approach for automatic detection of abnormalities in the mammograms. Image processing techniques have been applied to accurately segment the suspicious region-of-interest (ROI) prior to abnormality detection. Unsharp masking has been applied for enhancement of the mammogram. Noise removal has been done by using median filtering. Discrete wavelet transform has been applied on filtered image to get the accurate result prior to segmentation. Suspicious ROI has been segmented using the fuzzy- C-means with thresholding technique. Tamura features, shape based features and moment invariants are extracted from the segmented ROI to detect the abnormalities in the mammograms. Proposed algorithm has been validated on the Mini-MIAS data set.

نویسندگان

Toktam Rahimi

Student of Medicine and General Surgery, University of Sapintra, Rome, Italy

mitra shateri

Student of Dentist, University of PADOVA, Italy

Ciro borriello

Italian physician and surgeon, BARI, Italy

Anis Rahimi

Anesthesiologist, Shahid Beheshti University