Comparison of Cycle-GAN and Auto-Encoder in Brain MR Image Super Resolution
سال انتشار: 1399
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 827
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ITCT09_024
تاریخ نمایه سازی: 6 شهریور 1399
چکیده مقاله:
Due to some limitations in medical image acquisitions, such as low radiation dose, immobility of patient for a long time during the imaging process, and the diagnostic quality of the medical image itself, generating Super-Resolution Image studies in medical image processing is significantly vital. Many image restoration techniques have changed from an analytical point of view to machine learning-dependent methods. We testify two famous machine learning models that are so significant in the reconstruction of the image data, Cycle Generative Adversarial Neural Network (CGAN), and Autoencoder (AE) in Super-Resolution of brain MR images. For quality assessment of reconstructed images, we use the Mean Opinion Score (MOS). The results show CGAN reconstructed images better than AE.
کلیدواژه ها:
نویسندگان
Fardad Ansari
Faculty of Biomedical Engineering, Sahand University of Technology
Sebelan Danishvar
Department of Electronic and Computer Engineering, College of Engineering, Design and Physical Sciences, Brunel University, UK. Sebelan